Classical Metric Diophantine Approximation Revisited: The Khintchine-Groshev Theorem

被引:31
|
作者
Beresnevich, Victor [1 ]
Velani, Sanju [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
DUFFIN; LAWS;
D O I
10.1093/imrn/rnp119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(n,m)(psi) denote the set of psi-approximable points in R-mn. Under the assumption that the approximating function psi is monotonic, the classical Khintchine-Groshev theorem provides an elegant probabilistic criterion for the Lebesgue measure of A(n,m)(psi). The famous Duffin-Schaeffer counterexample shows that the monotonicity assumption on psi is absolutely necessary when m = n = 1. On the other hand, it is known that monotonicity is not necessary when n >= 3 ( Schmidt) or when n = 1 and m >= 2 (Gallagher). Surprisingly, when n = 2, the situation is unresolved. We deal with this remaining case and thereby remove all unnecessary conditions from the classical Khintchine-Groshev theorem. This settles a multidimensional analog of Catlin's conjecture.
引用
收藏
页码:69 / 86
页数:18
相关论文
共 50 条
  • [1] METRIC DIOPHANTINE APPROXIMATION: THE KHINTCHINE-GROSHEV THEOREM FOR NONDEGENERATE MANIFOLDS
    Beresnevich, V. V.
    Bernik, V. I.
    Kleinbock, D. Y.
    Margulis, G. A.
    MOSCOW MATHEMATICAL JOURNAL, 2002, 2 (02) : 203 - 225
  • [2] A quantitative Khintchine-Groshev theorem for S-arithmetic diophantine approximation
    Han, Jiyoung
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (06): : 1355 - 1372
  • [3] A note on the weighted Khintchine-Groshev Theorem
    Hussain, Mumtaz
    Yusupova, Tatiana
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (02): : 385 - 397
  • [4] The Khintchine-Groshev theorem for planar curves
    Beresnevich, VV
    Bernik, VI
    Dickinson, H
    Dodson, MM
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1988): : 3053 - 3063
  • [5] A KHINTCHINE-GROSHEV THEOREM FOR AFFINE HYPERPLANES
    Ghosh, Anish
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (04) : 1045 - 1064
  • [6] Diophantine exponents and the Khintchine Groshev theorem
    Ghosh, Anish
    MONATSHEFTE FUR MATHEMATIK, 2011, 163 (03): : 281 - 299
  • [7] Diophantine exponents and the Khintchine Groshev theorem
    Anish Ghosh
    Monatshefte für Mathematik, 2011, 163 : 281 - 299
  • [8] Variants of Khintchine's theorem in metric Diophantine approximation
    Kaziulyte, Laima
    JOURNAL OF NUMBER THEORY, 2020, 215 : 160 - 170
  • [9] A quantitative Khintchine-Groshev type theorem over a field of formal series
    Dodson, MM
    Kristensen, S
    Levesley, J
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (02): : 171 - 177
  • [10] HAUSDORFF DIMENSION, LOWER ORDER AND KHINTCHINE THEOREM IN METRIC DIOPHANTINE APPROXIMATION
    DODSON, MM
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1992, 432 : 69 - 76