Simple precise approximations to Weibull sums

被引:53
|
作者
Silveira Santos, Jos Candido [1 ]
Yacoub, Michel Daoud [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Dept Commun, BR-13083852 Campinas, SP, Brazil
关键词
approximation methods; generalized fading channels; Weibull sums;
D O I
10.1109/LCOMM.2006.060523
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Simple and precise closed-form approximations to the probability density function and cumulative distribution function of the sum of independent identically distributed Weibull variates are derived. The new approximations find applicability in several wireless communications issues such as equal-gain combining, signal detection, linear equalizers, outage probability, intersymbol interference, and phase jitter.
引用
收藏
页码:614 / 616
页数:3
相关论文
共 50 条
  • [1] Simple and Accurate Approximations for Computing Covariance Matrices of Gamma and Weibull Order Statistics
    Lesch, S. M.
    Arnold, B. C.
    Jeske, D. R.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (03) : 590 - 609
  • [2] Approximations to Weyl sums
    Bruedern, Joerg
    [J]. ACTA ARITHMETICA, 2018, 184 (03) : 287 - 296
  • [4] Approximations and Inequalities for Moving Sums
    Joseph Glaz
    Joseph Naus
    Xiao Wang
    [J]. Methodology and Computing in Applied Probability, 2012, 14 : 597 - 616
  • [5] Approximations and Inequalities for Moving Sums
    Glaz, Joseph
    Naus, Joseph
    Wang, Xiao
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2012, 14 (03) : 597 - 616
  • [6] Approximations to Weighted Sums of Random Variables
    Amit N. Kumar
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2447 - 2464
  • [7] Sums of Exponentials Approximations for the Kohlrausch Function
    Anderssen, R. S.
    Edwards, M. P.
    Husain, S. A.
    Loy, R. J.
    [J]. 19TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2011), 2011, : 263 - 269
  • [8] Approximations to Weighted Sums of Random Variables
    Kumar, Amit N.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2447 - 2464
  • [9] Numerical comparisons of approximations of geometric sums
    Bon, JL
    Philippe, A
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (01) : 37 - 48
  • [10] Martingale approximations for sums of stationary processes
    Wu, WB
    Woodroofe, M
    [J]. ANNALS OF PROBABILITY, 2004, 32 (02): : 1674 - 1690