Bayesian reasoning versus conventional statistics in high energy physics

被引:0
|
作者
D'Agostini, G [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
来源
关键词
subjective Bayesian theory; high energy physics; measurement uncertainty;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The intuitive reasoning of physicists in conditions of uncertainty is closer to the Bayesian approach than to the frequentist ideas taught at University and which are considered the reference framework for handling statistical problems. The combination of intuition and conventional statistics allows practitioners to get results which are very close, both in meaning and in numerical value? to those obtainable by Bayesian methods, at least in simple routine applications. There are, however, cases in which "arbitrary" probability inversion produce unacceptable or misleading results and in these the conscious application of Bayesian reasoning becomes crucial. Starting from these considerations, I will finally comment on the often debated question: "is there any chance that all physicists will become Bayesian?".
引用
收藏
页码:157 / 170
页数:14
相关论文
共 50 条
  • [1] ARE BAYESIAN STATISTICS USEFUL TO ARCHAEOLOGICAL REASONING
    REECE, R
    [J]. ANTIQUITY, 1994, 68 (261) : 848 - 850
  • [2] ARE BAYESIAN STATISTICS USEFUL TO ARCHAEOLOGICAL REASONING - REPLY
    BUCK, CE
    KENWORTHY, JB
    LITTON, CD
    SMITH, AFM
    [J]. ANTIQUITY, 1994, 68 (261) : 850 - 850
  • [3] FULLY BAYESIAN UNFOLDING IN HIGH-ENERGY PHYSICS
    Baron, Petr
    [J]. ACTA PHYSICA POLONICA B, 2020, 51 (06): : 1239 - 1248
  • [4] Classical versus Bayesian Statistics
    Johannesson, Eric
    [J]. PHILOSOPHY OF SCIENCE, 2020, 87 (02) : 302 - 318
  • [5] Tsallis statistics and thermofractals: Applications to high energy and hadron physics
    Megias, Eugenio
    Andrade II, Evandro
    Deppman, Airton
    Gammal, Arnaldo
    Menezes, Debora P.
    da Silva, Tiago Nunes
    Timoteo, Varese S.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2023, 38 (18-19):
  • [6] NEEDS VERSUS MEANS IN HIGH-ENERGY PHYSICS
    PANOFSKY, WKH
    [J]. PHYSICS TODAY, 1980, 33 (06) : 24 - &
  • [7] Bayesian versus "Plain-Vanilla Bayesian" multitarget statistics
    Mahler, R
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIII, 2004, 5429 : 1 - 12
  • [8] TERASCALE PHYSICS OPPORTUNITIES AT A HIGH STATISTICS, HIGH ENERGY NEUTRINO SCATTERING EXPERIMENT: NuSOnG
    Adams, T.
    Batra, P.
    Bugel, L.
    Camilleri, L.
    Conrad, J. M.
    De Gouvea, A.
    Fisher, P. H.
    Formaggio, J. A.
    Jenkins, J.
    Karagiorgi, G.
    Kobilarcik, T. R.
    Kopp, S.
    Kyle, G.
    Loinaz, W. A.
    Mason, D. A.
    Milner, R.
    Moore, R.
    Morfin, J. G.
    Nakamura, M.
    Naples, D.
    Nienaber, P.
    Olness, F. I.
    Owens, J. F.
    Pate, S. F.
    Pronin, A.
    Seligman, W. G.
    Shaevitz, M. H.
    Schellman, H.
    Schienbein, I.
    Syphers, M. J.
    Tait, T. M. P.
    Takeuchi, T.
    Tan, C. Y.
    De Water, R. G. Van
    Yamamoto, R. K.
    Yu, J. Y.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (04): : 671 - 717
  • [9] A Bayesian-Symbolic Approach to Reasoning and Learning in Intuitive Physics
    Xu, Kai
    Srivastava, Akash
    Gutfreund, Dan
    Sosa, Felix A.
    Ullman, Tomer
    Tenenbaum, Joshua B.
    Sutton, Charles
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [10] Bayesian statistics versus classical statistics in survival analysis: an applicable example
    Soodejani, Moslem Taheri
    Tabatabaei, Seyyed Mohammad
    Mahmoudimanesh, Marzieh
    [J]. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE, 2021, 11 (04): : 484 - 488