Prediction of protein-protein interaction sites using support vector machines

被引:136
|
作者
Koike, A
Takagi, T
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol, Kashiwa, Chiba 2778561, Japan
[2] Hitachi Ltd, Cent Res Lab, Kokubunji, Tokyo 1858601, Japan
来源
关键词
accessible surface area; hydrophobicity; interaction site ratio; protein interaction site; support vector machine;
D O I
10.1093/protein/gzh020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The identification of protein-protein interaction sites is essential for the mutant design and prediction of protein-protein networks. The interaction sites of residue units were predicted using support vector machines (SVM) and the profiles of sequentially/spatially neighboring residues, plus additional information. When only sequence information was used, prediction performance was highest using the feature vectors, sequentially neighboring profiles and predicted interaction site ratios, which were calculated by SVM regression using amino acid compositions. When structural information was also used, prediction performance was highest using the feature vectors, spatially neighboring residue profiles, accessible surface areas, and the with/without protein interaction sites ratios predicted by SVM regression and amino acid compositions. In the latter case, the precision at recall = 50% was 54-56% for a homo-hetero mixed test set and >20% higher than for random prediction. Approximately 30% of the residues wrongly predicted as interaction sites were the closest sequentially/spatially neighboring on the interaction site residues. The predicted residues covered 86-87% of the actual interfaces (96-97% of interfaces with over 20 residues). This prediction performance appeared to be slightly higher than a previously reported study. Comparing the prediction accuracy of each molecule, it seems to be easier to predict interaction sites for stable complexes.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 50 条
  • [1] Prediction of protein-protein interaction sites using support vector machines
    Minakuchi, Y
    Satou, K
    Konagaya, A
    METMBS'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2003, : 22 - 28
  • [2] Improved prediction of protein-protein binding sites using a support vector machines approach
    Bradford, JR
    Westhead, DR
    BIOINFORMATICS, 2005, 21 (08) : 1487 - 1494
  • [3] Effect of Protein Repetitiveness on Protein-Protein Interaction Prediction Results Using Support Vector Machines
    Zhou, Jie
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (02) : 183 - 192
  • [4] Prediction of protein-protein interactions using support vector machines
    Dohkan, S
    Koike, A
    Takagi, T
    BIBE 2004: FOURTH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, PROCEEDINGS, 2004, : 576 - 583
  • [5] Prediction of Protein-Protein Interaction Sites by Using Autocorrelation Descriptor and Support Vector Machine
    Ren, Xiao-Ming
    Xia, Jun-Feng
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2010, 6216 : 76 - 82
  • [6] Prediction of protein-protein interactions through support vector machines
    Arango Rodriguez, J. D.
    Jaramillo-Garzon, J. A.
    Arroyave-Ospina, J. C.
    2015 20TH SYMPOSIUM ON SIGNAL PROCESSING, IMAGES AND COMPUTER VISION (STSIVA), 2015,
  • [7] Predicting protein-protein interaction sites using modified support vector machine
    Guo, Hong
    Liu, Bingjing
    Cai, Danli
    Lu, Tun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (03) : 393 - 398
  • [8] Prediction of Protein Phosphorylation Sites by Support Vector Machines
    Ishino, Tomoki
    Nishikawa, Ikuko
    Fukuchi, Satoshi
    Tohsato, Yukako
    Nishikawa, Ken
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 817 - 821
  • [9] Fast prediction of protein-protein interaction sites based on Extreme Learning Machines
    Wang, Debby A.
    Wang, Ran
    Yan, Hong
    NEUROCOMPUTING, 2014, 128 : 258 - 266
  • [10] Prediction of Protein-Protein Interaction with Pairwise Kernel Support Vector Machine
    Zhang, Shao-Wu
    Hao, Li-Yang
    Zhang, Ting-He
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (02): : 3220 - 3233