The Wigner distribution for classical systems

被引:52
|
作者
Galleani, L
Cohen, L
机构
[1] CUNY, New York, NY 10021 USA
[2] Politecn Torino, I-10129 Turin, Italy
关键词
Wigner distribution; time-frequency; quasi-distributions; phase space;
D O I
10.1016/S0375-9601(02)01138-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an explicit procedure for obtaining the equation of motion for the Wigner distribution when the underlying governing equation is a linear ordinary or partial differential equation. The cases of constant and variable coefficients are considered. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 50 条
  • [1] Wigner equations of motion for classical systems
    Galeani, L
    Cohen, L
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS X, 2000, 4116 : 42 - 65
  • [2] Wigner distribution for random systems
    Galleani, L
    Cohen, L
    JOURNAL OF MODERN OPTICS, 2002, 49 (14-15) : 2657 - 2665
  • [3] The Wigner distribution and 2D classical maps
    Sakhr, Jamal
    PHYSICS LETTERS A, 2017, 381 (28) : 2207 - 2213
  • [4] Wigner distribution function for Euclidean systems
    Nieto, LM
    Atakishiyev, NM
    Chumakov, SM
    Wolf, KB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16): : 3875 - 3895
  • [5] Application of the Wigner distribution to nonlinear systems
    Galleani, L
    Lo Presti, L
    JOURNAL OF MODERN OPTICS, 2002, 49 (3-4) : 571 - 579
  • [6] Probing nonlinear systems with the Wigner distribution
    Galleani, L
    Lo Presti, L
    JOURNAL OF MODERN OPTICS, 2002, 49 (3-4) : 581 - 592
  • [7] Wigner distribution function for Euclidean systems
    Nieto, L. M.
    Atakishiyev, N. M.
    Chumakov, S. M.
    Wolf, K. B.
    Journal of Physics A: Mathematical and General, 31 (16):
  • [8] Wigner distribution function for finite systems
    Atakishiyev, NM
    Chumakov, SM
    Wolf, KB
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6247 - 6261
  • [9] CLASSICAL DISTRIBUTION-FUNCTIONS DERIVED FROM WIGNER DISTRIBUTION-FUNCTIONS
    BUND, GW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (13): : 3709 - 3717
  • [10] On the similarities between the Wigner distribution function in classical and quantum optics
    Dragoman, D
    Dragoman, M
    OPTIK, 2001, 112 (11): : 497 - 501