Boosting CNN performance for lung texture classification using connected filtering

被引:0
|
作者
Tarando, Sebastian Roberto [1 ,2 ]
Fetita, Catalin [1 ,2 ]
Kim, Young-Wouk [4 ]
Cho, Hyoun [5 ]
Brillet, Pierre-Yves [3 ,4 ]
机构
[1] Inst Mines Telecom, ARTEMIS Dept, TELECOM SudParis, Evry, France
[2] CNRS UMR8145 MAP5, SAMOVAR UMR5157, Paris, France
[3] Univ Paris13, Paris, France
[4] Avicenne Hosp, AP HP, Bobigny, France
[5] Hop La Pitie Salpetriere, AP HP, Paris, France
关键词
infiltrative lung diseases; lung texture classification; convolutional networks; deep learning; fibrosis; ground glass; emphysema; locally connected filters; mathematical morphology;
D O I
10.1117/12.2293093
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Infiltrative lung diseases describe a large group of irreversible lung disorders requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. This paper presents an original image pre-processing framework based on locally connected filtering applied in multiresolution, which helps improving the learning process and boost the performance of CNN for lung texture classification. By removing the dense vascular network from images used by the CNN for lung classification, locally connected filters provide a better discrimination between different lung patterns and help regularizing the classification output. The approach was tested in a preliminary evaluation on a 10 patient database of various lung pathologies, showing an increase of 10% in true positive rate (on average for all the cases) with respect to the state of the art cascade of CNNs for this task.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Lung nodule classification using combination of CNN, second and higher order texture features
    Naik, Amrita
    Edla, Damodar Reddy
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (05) : 5243 - 5251
  • [2] Rotation invariant texture classification using multichannel filtering
    Manthalkar, R
    Biswas, PK
    OBJECT DETECTION, CLASSIFICATION, AND TRACKING TECHNOLOGIES, 2001, 4554 : 107 - +
  • [3] Classification of Mammograms Using Texture and CNN Based Extracted Features
    Debelee, Taye Girma
    Gebreselasie, Abrham
    Schwenker, Friedhelm
    Aminan, Mohammadreza
    Yohannes, Dereje
    JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING, 2019, 42 : 79 - 97
  • [4] Investigation of Texture Classification for Power Line Surface by Using CNN
    Fujiwara, Takayuki
    Hashimoto, Ryohei
    Usaka, Syori
    Yokoyama, Tomohiro
    Iwasaki, Jun-ichi
    PROCEEDINGS OF THE SEVENTH ASIA INTERNATIONAL SYMPOSIUM ON MECHATRONICS, VOL II, 2020, 589 : 976 - 980
  • [5] Boosting the performance of pretrained CNN architecture on dermoscopic pigmented skin lesion classification
    Nugroho, Erwin Setyo
    Ardiyanto, Igi
    Nugroho, Hanung Adi
    SKIN RESEARCH AND TECHNOLOGY, 2023, 29 (11)
  • [6] Texture CNN for Histopathological Image Classification
    de Matos, Jonathan
    Britto, Alceu de S., Jr.
    de Oliveira, Luiz E. S.
    Koerich, Alessandro L.
    2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 580 - 583
  • [7] Classification of honeybee pollen using a multiscale texture filtering scheme
    P. Carrión
    E. Cernadas
    J. F. Gálvez
    M. Damián
    P. de Sá-Otero
    Machine Vision and Applications, 2004, 15 : 186 - 193
  • [8] Classification of honeybee pollen using a multiscale texture filtering scheme
    Carrión, P
    Cernadas, E
    Gálvez, J
    Damián, M
    de Sá-Otero, P
    MACHINE VISION AND APPLICATIONS, 2004, 15 (04) : 186 - 193
  • [9] Refined Color Texture Classification Using CNN and Local Binary Pattern
    Hosny, Khalid M.
    Magdy, Taher
    Lashin, Nabil A.
    Apostolidis, Kyriakos
    Papakostas, George A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [10] Arrhythmia Classification Using Noise Filtering and 1D CNN
    Mallikarjunamallu, K.
    Khasim, Syed
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 1847 - 1859