ON VIBRATING THIN MEMBRANES WITH MASS CONCENTRATED NEAR THE BOUNDARY: AN ASYMPTOTIC ANALYSIS

被引:3
|
作者
Dalla Riva, Matteo [1 ,2 ]
Provenzano, Luigi [3 ]
机构
[1] Univ Tulsa, Dept Math, Tulsa, OK 74104 USA
[2] Aberystwyth Univ, Dept Math, Ceredigion SY23 3BZ, Wales
[3] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
基金
欧盟地平线“2020”;
关键词
Steklov boundary conditions; eigenvalues; mass concentration; asymptotic analysis; spectral analysis; GENERIC PROPERTIES; STEKLOV PROBLEM; STIFF PROBLEMS; EIGENFUNCTIONS;
D O I
10.1137/17M1118221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a smooth bounded domain Omega of R-2 we consider the spectral problem -Delta u(epsilon) = lambda(epsilon)rho(epsilon)u(epsilon) with boundary condition partial derivative u(epsilon)/partial derivative nu = 0. The factor rho(epsilon) plays the role of a mass density, and it is equal to a constant of order epsilon(-1) in an epsilon-neighborhood of the boundary and to a constant of order epsilon in the rest of Omega. We study the asymptotic behavior of the eigenvalues lambda(epsilon) and the eigenfunctions u(epsilon) as epsilon tends to zero. We obtain explicit formulas for the first and second terms of the corresponding asymptotic expansions by exploiting the solutions of certain auxiliary boundary value problems.
引用
收藏
页码:2928 / 2967
页数:40
相关论文
共 50 条
  • [1] Asymptotic analysis of a vibrating cantilever with a nonlinear boundary
    Chen LiQun
    Lim, C. W.
    Hu QingQuan
    Ding Hu
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (09): : 1414 - 1422
  • [2] Asymptotic analysis of a vibrating cantilever with a nonlinear boundary
    C. W. LIM
    Science in China(Series G:Physics,Mechanics & Astronomy), 2009, (09) : 1414 - 1422
  • [3] Asymptotic analysis of a vibrating cantilever with a nonlinear boundary
    LiQun Chen
    C. W. Lim
    QingQuan Hu
    Hu Ding
    Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52 : 1414 - 1422
  • [4] On a vibrating plate with a concentrated mass
    Gómez, D
    Lobo, M
    Pérez, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2000, 328 (06): : 495 - 500
  • [5] New asymptotic effects for the spectrum of problems on concentrated masses near the boundary
    Nazarov, Sergey A.
    Perez, Eugenia
    COMPTES RENDUS MECANIQUE, 2009, 337 (08): : 585 - 590
  • [6] On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary
    Nazarov, Sergei A.
    Eugenia Perez, M.
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (01): : 1 - 62
  • [7] On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary
    Sergei A. Nazarov
    M. Eugenia Pérez
    Revista Matemática Complutense, 2018, 31 : 1 - 62
  • [8] ASYMPTOTIC-BEHAVIOR OF THE VIBRATIONS OF A BODY HAVING MANY CONCENTRATED MASSES NEAR THE BOUNDARY
    LOBO, M
    PEREZ, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1992, 314 (01): : 13 - 18
  • [9] AN ASYMPTOTIC FORMULA FOR THE SPLIT OF THE EIGENVALUES CORRESPONDING TO THE EIGENFUNCTIONS WHICH ARE CONCENTRATED NEAR THE BOUNDARY OF THE DOMAIN
    TABANOV, MB
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1982, (04): : 33 - 37
  • [10] ASYMPTOTIC-BEHAVIOR FOR THE VIBRATING STRING WITH A MOVING BOUNDARY
    COOPER, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 174 (01) : 67 - 87