Multi-objective Environmental-economic Load Dispatch Considering Generator Constraints and Wind Power Using Improved Multi-objective Particle Swarm Optimization

被引:0
|
作者
Yalcinoz, Tankut [1 ,2 ]
Rudion, Krzysztof [1 ]
机构
[1] Univ Stuttgart, IEH, Stuttgart, Germany
[2] TransnetBW GmbH, Stuttgart, Germany
关键词
optimization; particle swarm optimization; power generation dispatch; power system economics; wind energy; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the vital optimization issues in energy systems is the problem of economic load dispatch (ED). On the other hand, solar, wind, and other renewable energies are important energy sources for reducing hazardous emissions. This paper suggests an improved multi-objective particle swarm optimization algorithm (IMOPSO) that uses a functional inertial weight and a functional constriction factor to solve the multi-objective environmental-economic load dispatch (NEED) problem. A mutation strategy is used in IMOPSO, and a mutation operator, which is implemented for each particle in the swarm, is used to find optimum Pareto fronts. In this paper, the proposed IMOPSO is applied to the MEED problem under consideration of emission pollution, wind energy, prohibited operating zone, ramp limits, valve point effects, and transmission losses. The proposed technique is tested on the IEEE 30-bus, the IEEE 118-bus test system, and the modified IEEE 118-bus test system with emission coefficients, ramp rate limits, wind power, and prohibited operating zone. The IMOPSOs are compared with the results of various multi-objective algorithms to solve the MEED problem. The simulation results indicate that the IMOPSO produces better results than the compared multi-objective optimization algorithms for various test systems.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [1] A multi-objective chaotic particle swarm optimization for environmental/economic dispatch
    Cai, Jiejin
    Ma, Xiaoqian
    Li, Qiong
    Li, Lixiang
    Peng, Haipeng
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (05) : 1318 - 1325
  • [2] A New Multi-objective Particle Swarm Optimization for Economic Environmental Dispatch
    Bilil, Hasnae
    Ellaia, Rachid
    Maaroufi, Mohamed
    PROCEEDINGS OF 2012 INTERNATIONAL CONFERENCE ON COMPLEX SYSTEMS (ICCS12), 2012, : 75 - 80
  • [3] Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm
    Wang, Lingfeng
    Singh, Chanan
    ELECTRIC POWER SYSTEMS RESEARCH, 2007, 77 (12) : 1654 - 1664
  • [4] Multi-Objective VAR Dispatch Using Particle Swarm Optimization
    Durairaj, S.
    Kannan, P. S.
    Devaraj, D.
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2005, 4 (01):
  • [5] Multi-objective Optimization of Economic Environmental Dispatch
    Zhang, Rui
    Zhang, Li-sheng
    Liu, Shu-nan
    2016 INTERNATIONAL CONFERENCE ON ENVIRONMENT, CLIMATE CHANGE AND SUSTAINABLE DEVELOPMENT (ECCSD 2016), 2016, : 30 - 36
  • [6] A multi-objective optimization for power economic dispatch
    Chiang, Chao-Lung
    Chai, Chang-Wei
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 1587 - +
  • [7] A multi-objective chaotic ant swarm optimization for environmental/economic dispatch
    Cai, Jiejin
    Ma, Xiaoqian
    Li, Qiong
    Li, Lixiang
    Peng, Haipeng
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2010, 32 (05) : 337 - 344
  • [8] An Improved Multi-objective Particle Swarm Optimization
    Xu, Shengbing
    Ouyang, Zhiping
    Feng, Jiqiang
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2020), 2020, : 19 - 23
  • [9] An Improved Multi-Objective Particle Swarm Optimization
    Yang, Xixiang
    Zhang, Weihua
    ADVANCED SCIENCE LETTERS, 2011, 4 (4-5) : 1491 - 1495
  • [10] A New Multi-objective Particle Swarm Optimization for Reactive Power Dispatch
    Bilil, Hasnae
    Ellaia, Rachid
    Maaroufi, Mohamed
    2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2012, : 1119 - 1124