Enhanced reactivity of nanoenergetic materials: A first-principles molecular dynamics study based on divide-and-conquer density functional theory

被引:37
|
作者
Shimojo, Fuyuki [1 ,2 ,3 ]
Nakano, Aiichiro [1 ,2 ]
Kalia, Rajiv K. [1 ,2 ]
Vashishta, Priya [1 ,2 ]
机构
[1] Univ So Calif, Dept Phys & Astron, Dept Comp Sci, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[3] Kumamoto Univ, Dept Phys, Kumamoto 8608555, Japan
关键词
ab initio calculations; aluminium; chemical interdiffusion; density functional theory; iron compounds; molecular dynamics method; nanowires; surface chemistry; AL/FE2O3;
D O I
10.1063/1.3189143
中图分类号
O59 [应用物理学];
学科分类号
摘要
Integration of nanowires and nanoparticles of energetic materials into semiconducting structures is giving birth to "nanoenergetics-on-a-chip" technology. Understanding and controlling the reactions of nanoenergetic materials pose a theoretical challenge for combining quantum-mechanical accuracy with large scales to capture nanostructural effects. Recent developments in linear-scaling density functional theory have set a stage for first-principles molecular dynamics simulation of thermite reaction at an Al/Fe2O3 interface. Here, we report the finding of a concerted metal-oxygen flip mechanism that enhances mass diffusion and reaction rate at the interface. This mechanism leads to two-stage reactions, which may explain recent experimental observation in thermite nanowire arrays.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory
    Shimojo, F.
    Ohmura, S.
    Nakano, A.
    Kalia, R. K.
    Vashishta, P.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 196 (01): : 53 - 63
  • [2] Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory
    F. Shimojo
    S. Ohmura
    A. Nakano
    R. K. Kalia
    P. Vashishta
    [J]. The European Physical Journal Special Topics, 2011, 196 : 53 - 63
  • [3] Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory
    Shimojo, F.
    Ohmura, S.
    Nakano, A.
    Kalia, R. K.
    Vashishta, P.
    [J]. LAM14 - XIV LIQUID AND AMORPHOUS METALS CONFERENCE, 2011, 15
  • [4] A COMBINED QUANTUM MOLECULAR MECHANICS SCHEME BASED ON YANG DIVIDE-AND-CONQUER APPROACH TO DENSITY-FUNCTIONAL THEORY
    STAMANT, A
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 7 - PHYS
  • [5] Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations
    Nishimura, Yoshifumi
    Nakai, Hiromi
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (19) : 1759 - 1772
  • [6] First principles calculations using density matrix divide-and-conquer within the SIESTA methodology
    Cankurtaran, B. O.
    Gale, J. D.
    Ford, M. J.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (29)
  • [7] First-Principles Density Functional Theory Study of Modified Germanene-Based Electrode Materials
    Si, Xue
    She, Weihan
    Xu, Qiang
    Yang, Guangmin
    Li, Zhuo
    Wang, Siqi
    Luan, Jingfei
    [J]. MATERIALS, 2022, 15 (01)
  • [8] THE DIVIDE-AND-CONQUER DENSITY-FUNCTIONAL APPROACH - MOLECULAR INTERNAL-ROTATION AND DENSITY OF STATES
    LEE, CT
    YANG, WT
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03): : 2408 - 2411
  • [9] A Gaussian Implementation of Yang's Divide-and-Conquer Density-Functional Theory Approach
    St-Amant, A.
    [J]. ACS Symposium Series, 1996, (629):
  • [10] A gaussian implementation of Yang's divide-and-conquer density-functional theory approach
    StAmant, A
    [J]. CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY, 1996, 629 : 70 - 84