Zebrafish tracking using convolutional neural networks

被引:53
|
作者
Xu, Zhiping [1 ]
Cheng, Xi En [2 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[2] Jingdezhen Ceram Inst, Jingdezhen, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
D O I
10.1038/srep42815
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Zebrafish tracking using convolutional neural networks
    Zhiping XU
    Xi En Cheng
    [J]. Scientific Reports, 7
  • [2] Human Tracking Using Convolutional Neural Networks
    Fan, Jialue
    Xu, Wei
    Wu, Ying
    Gong, Yihong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (10): : 1610 - 1623
  • [3] Mouse face tracking using convolutional neural networks
    Akkaya, Ibrahim Batuhan
    Halici, Ugur
    [J]. IET COMPUTER VISION, 2018, 12 (02) : 153 - 161
  • [4] Object Tracking and Detection Using Convolutional Neural Networks
    Sujatha, C. N.
    Sahithi, P.
    Hamsini, R.
    Haripriya, M.
    [J]. PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND COMMUNICATION SYSTEMS, ICACECS 2021, 2022, : 97 - 107
  • [5] Moving object detection and tracking Using Convolutional Neural Networks
    Mane, Shraddha
    Mangale, Supriya
    [J]. PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1809 - 1813
  • [6] Online Tracking with Convolutional Neural Networks
    Liu, Xiaodong
    Zhou, Yue
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 208 - 216
  • [7] Robust Object Tracking Using Manifold Regularized Convolutional Neural Networks
    Hu, Hongwei
    Ma, Bo
    Shen, Jianbing
    Sun, Hanqiu
    Shao, Ling
    Porikli, Fatih
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (02) : 510 - 521
  • [8] Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
    Stember, J. N.
    Celik, H.
    Krupinski, E.
    Chang, P. D.
    Mutasa, S.
    Wood, B. J.
    Lignelli, A.
    Moonis, G.
    Schwartz, L. H.
    Jambawalikar, S.
    Bagci, U.
    [J]. JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) : 597 - 604
  • [9] Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
    J. N. Stember
    H. Celik
    E. Krupinski
    P. D. Chang
    S. Mutasa
    B. J. Wood
    A. Lignelli
    G. Moonis
    L. H. Schwartz
    S. Jambawalikar
    U. Bagci
    [J]. Journal of Digital Imaging, 2019, 32 : 597 - 604
  • [10] Attentional Convolutional Neural Networks for Object Tracking
    Kong, Xiangdong
    Cao, Xianbin
    [J]. 2018 INTEGRATED COMMUNICATIONS, NAVIGATION, SURVEILLANCE CONFERENCE (ICNS), 2018,