Transparent film heaters (TFHs) based on Joule heating are currently an active research area. However, TFHs based on an indium tin oxide (ITO) monolayer have a number of problems. For example, heating is concentrated in only part of the device. Also, heating efficiency is low because it has high sheet resistance (R-s). To address these problems, this study introduced hybrid layers of ITO/Ag/ITO deposited by magnetron sputtering, and the electrical, optical, and thermal properties were estimated for various thicknesses of the metal interlayer. The R-s, of ITO(40)/Ag/ITO(40 nm) hybrid TFHs were 5.33, 3.29 and 2.15 Omega/rectangle for Ag thicknesses of 10, 15, and 20 nm, respectively, while the R-s, of an ITO monolayer (95 nm) was 59.58 Omega/rectangle. The maximum temperatures of these hybrid TFHs were 92, 131, and 145 degrees C, respectively, under a voltage of 3 V. And that of the ITO monolayer was only 32 degrees C. For the same total thickness of 95 nm, the heat generation rate (HGR) of the hybrid produced a temperature approximately 100 degrees C higher than the ITO monolayer. It was confirmed that the film with the lowest R-s, of the samples had the highest HGR for the same applied voltage. Overall, hybrid layers of ITO/Ag/ITO showed excellent performance for HGR, uniformity of heat distribution, and thermal response time.