Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images

被引:32
|
作者
Yamashita, Rikiya [1 ,2 ]
Long, Jin [2 ]
Saleem, Atif [3 ]
Rubin, Daniel L. [1 ,2 ]
Shen, Jeanne [2 ,3 ]
机构
[1] Stanford Univ, Dept Biomed Data Sci, Sch Med, 1265 Welch Rd, Stanford, CA 94305 USA
[2] Stanford Univ, Ctr Artificial Intelligence Med & Imaging, 1701 Page Mill Rd, Palo Alto, CA 94304 USA
[3] Stanford Univ, Dept Pathol, Sch Med, 300 Pasteur Dr, Stanford, CA 94305 USA
关键词
MICROVASCULAR INVASION; RESECTION; SURVIVAL; UPDATE;
D O I
10.1038/s41598-021-81506-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recurrence risk stratification of patients undergoing primary surgical resection for hepatocellular carcinoma (HCC) is an area of active investigation, and several staging systems have been proposed to optimize treatment strategies. However, as many as 70% of patients still experience tumor recurrence at 5 years post-surgery. We developed and validated a deep learning-based system (HCC-SurvNet) that provides risk scores for disease recurrence after primary resection, directly from hematoxylin and eosin-stained digital whole-slide images of formalin-fixed, paraffin embedded liver resections. Our model achieved concordance indices of 0.724 and 0.683 on the internal and external test cohorts, respectively, exceeding the performance of the standard Tumor-Node-Metastasis classification system. The model's risk score stratified patients into low- and high-risk subgroups with statistically significant differences in their survival distributions, and was an independent risk factor for post-surgical recurrence in both test cohorts. Our results suggest that deep learning-based models can provide recurrence risk scores which may augment current patient stratification methods and help refine the clinical management of patients undergoing primary surgical resection for HCC.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images
    Rikiya Yamashita
    Jin Long
    Atif Saleem
    Daniel L. Rubin
    Jeanne Shen
    [J]. Scientific Reports, 11
  • [2] Deep Learning Classification and Quantification of Pejorative and Nonpejorative Architectures in Resected Hepatocellular Carcinoma from Digital Histopathologic Images
    Laurent-Bellue, Astrid
    Sadraoui, Aymen
    Claude, Laura
    Calderaro, Julien
    Posseme, Katia
    Vibert, Eric
    Cherqui, Daniel
    Rosmorduc, Olivier
    Lewin, Maite
    Pesquet, Jean-Christophe
    Guettier, Catherine
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2024, 194 (09): : 1684 - 1700
  • [3] Deep learning predicts sensitivity to atezolizumab-bevacizumab from digital slides of hepatocellular carcinoma
    Zeng, Qinghe
    Klein, Christophe
    Caruso, Stefano
    Maille, Pascale
    Allende, Daniela
    Minguez, Beatriz
    Iavarone, Massimo
    Ningarhari, Massih
    Gardini, Andrea Casadei
    Pedica, Federica
    Rimini, Margherita
    Perbellini, Riccardo
    Boulagnon-Rombi, Camille
    Heurgue-Berlot, Alexandra
    Maggioni, Marco
    Rela, Mohd.
    Vij, Mukul
    Baulande, Sylvain
    Legoix, Patricia
    Lameiras, Sonia
    Labgaa, Ismail
    Sempoux, Christine
    Digkilia, Antonia
    Ghaffari-Laleh, Narmin
    Kather, Jakob Nikolas
    El Nahhas, Omar
    Navale, Pooja
    Torres, Callie
    Su, Tung-Hung
    Graham, Rondell
    Salcedo, Maria
    Bermudez, Maria
    Tran, Nguyen H.
    Pawlotsky, Jean-Michel
    Verset, Gontran
    Trepo, Eric
    Varela, Maria
    Castano-Garcia, Andres
    Wendum, Dominique
    Amaddeo, Giuliana
    Regnault, Helene
    Lequoy, Marie
    Diaz, Alba
    Reig, Maria
    Radu, Pompilia
    Dufour, Jean-Francois
    Chan, Stephen
    Gopal, Purva
    Bruges, Lea
    Gnemmi, Viviane
    [J]. JOURNAL OF HEPATOLOGY, 2023, 78 : S13 - S14
  • [4] Predictive markers for postsurgical recurrence of hepatocellular carcinoma
    Gao, ZH
    [J]. JOURNAL OF SURGICAL ONCOLOGY, 2005, 92 (04) : 274 - 275
  • [5] Novel immune classification based on machine learning of pathological images predicts early recurrence of hepatocellular carcinoma
    Tan, Tianhua
    Hu, Huijuan
    Zhang, Wei
    Cui, Ju
    Lu, Zhenhua
    Li, Xuefei
    Song, Jinghai
    [J]. FRONTIERS IN ONCOLOGY, 2024, 14
  • [6] IL-11 drives postsurgical hepatocellular carcinoma recurrence
    Lauko, Adam
    Bayik, Defne
    Lathia, Justin D.
    [J]. EBIOMEDICINE, 2019, 47 : 18 - 19
  • [7] Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning
    Saito, Akira
    Toyoda, Hidenori
    Kobayashi, Masaharu
    Koiwa, Yoshinori
    Fujii, Hiroki
    Fujita, Koji
    Maeda, Atsuyuki
    Kaneoka, Yuji
    Hazama, Shoichi
    Nagano, Hiroaki
    Mirza, Aashiq H.
    Graf, Hans-Peter
    Cosatto, Eric
    Murakami, Yoshiki
    Kuroda, Masahiko
    [J]. MODERN PATHOLOGY, 2021, 34 (02) : 417 - 425
  • [8] Deep learning of pancreatic cancer histopathology images predicts recurrence after surgery
    Wong, A.
    Knox, J.
    Krishnan, R.
    Grant, R.
    [J]. ANNALS OF ONCOLOGY, 2023, 34 : S2 - S2
  • [9] Multitask deep learning for prediction of microvascular invasion and recurrence-free survival in hepatocellular carcinoma based on MRI images
    Wang, Fang
    Zhan, Gan
    Chen, Qing-qing
    Xu, Hou-yun
    Cao, Dan
    Zhang, Yuan-yuan
    Li, Yin-hao
    Zhang, Chu-jie
    Jin, Yao
    Ji, Wen-bin
    Ma, Jian-bing
    Yang, Yun-jun
    Zhou, Wei
    Peng, Zhi-yi
    Liang, Xiao
    Deng, Li-ping
    Lin, Lan-fen
    Chen, Yen-wei
    Hu, Hong-jie
    [J]. LIVER INTERNATIONAL, 2024, 44 (06) : 1351 - 1362
  • [10] Deep learning based classification for metastasis of hepatocellular carcinoma with microscopic images
    Meng, Hui
    Gao, Yuan
    Wang, Kun
    Tian, Jie
    [J]. MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949