Denoising Diffusion-Weighted Images Using Grouped Iterative Hard Thresholding of Multi-Channel Framelets

被引:2
|
作者
Zhang, Jian [1 ,2 ,3 ]
Chen, Geng [2 ,3 ,4 ]
Zhang, Yong [5 ]
Dong, Bin [6 ]
Shen, Dinggang [2 ,3 ]
Yap, Pew-Thian [2 ,3 ]
机构
[1] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan, Peoples R China
[2] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA
[4] Northwestern Polytech Univ, Data Proc Ctr, Xian, Shaanxi, Peoples R China
[5] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
[6] Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
关键词
IDENTIFICATION;
D O I
10.1007/978-3-319-54130-3_4
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Noise in diffusion-weighted (DW) images increases the complexity of quantitative analysis and decreases the reliability of inferences. Hence, to improve analysis, it is often desirable to remove noise and at the same time preserve relevant image features. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of DW images. Our approach (1) employs the unitary extension principle (UEP) to generate frames that are discrete analogues to differential operators of various orders; (2) introduces a very efficient method for solving an l(0) denoising problem that involves only thresholding and solving a trivial inverse problem; and (3) groups DW images acquired with neighboring gradient directions for collaborative denoising. Experiments using synthetic data with noncentral chi noise and real data with repeated scans confirm that our method yields superior performance compared with denoising using state-of-the-art methods such as non-local means.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 50 条
  • [1] Multi-channel framelet denoising of diffusion-weighted images
    Chen, Geng
    Zhang, Jian
    Zhang, Yong
    Dong, Bin
    Shen, Dinggang
    Yap, Pew-Thian
    PLOS ONE, 2019, 14 (02):
  • [2] Denoising of multi b-value diffusion-weighted MR images using deep image prior
    Lin, Yu-Chun
    Huang, Hsuan-Ming
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (10):
  • [3] Multi-channel wavelet-based diffusion method for denoising DTI images
    Zhang, Xiangfen
    Ye, Hong
    Zhang, Hongmei
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 2, 2008, : 178 - +
  • [4] Denoising Diffusion-Weighted Magnitude MR Images Using Rank and Edge Constraints
    Lam, Fan
    Babacan, S. Derin
    Haldar, Justin P.
    Weiner, Michael W.
    Schuff, Norbert
    Liang, Zhi-Pei
    MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (03) : 1272 - 1284
  • [5] Context-based denoising of images using iterative wavelet thresholding
    Marpe, D
    Cycon, HL
    Zander, G
    Barthel, KU
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2002, PTS 1 AND 2, 2002, 4671 : 907 - 914
  • [6] Unbiased segmentation of diffusion-weighted magnetic resonance images of the brain using iterative clustering
    Hadjiprocopis, A
    Rashid, W
    Tofts, PS
    MAGNETIC RESONANCE IMAGING, 2005, 23 (08) : 877 - 885
  • [7] Functional MRI using diffusion-weighted images
    Aso, Toshihiko
    Urayama, Shin-ichi
    Le Bihan, Denis
    Hanakawa, Takashi
    Sawamoto, Nobukatsu
    Fukuyama, Hidenao
    NEUROSCIENCE RESEARCH, 2006, 55 : S71 - S71
  • [8] Multi-channel registration of diffusion tensor images using directional information
    Rohde, GK
    Pajevic, S
    Pierpaoli, C
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 712 - 715
  • [9] A Fast Algorithm for Denoising Magnitude Diffusion-Weighted Images with Rank and Edge Constraints
    Lam, Fan
    Liu, Ding
    Song, Zhuang
    Schuff, Norbert
    Liang, Zhi-Pei
    MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (01) : 433 - 440
  • [10] Unrolling Multi-channel Weighted Nuclear Norm Minimization for Image Denoising
    Pham, Thuy Thi
    Mai, Truong Thanh Nhat
    Lee, Chul
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 243 - 244