Conventional bootstrap and normal confidence interval estimation under adaptive cluster sampling

被引:5
|
作者
Perez, Timothy D. [1 ]
Pontius, Jeffrey S. [1 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66502 USA
关键词
bootstrap confidence interval; ecology; finite population sampling; normal confidence interval;
D O I
10.1080/10629360500109002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We examine the performances of bootstrap and normal confidence interval methods for estimating the parametric total when using the Horvitz - Thompson type estimator under adaptive cluster sampling via simulation. On the basis of this and previous work, we include recommendations on using confidence interval methods under adaptive cluster sampling. Two Poisson spatially clustered populations and three sample sizes were used in our simulations. The bootstrap methods ( Gross, McCarthy and Snowden, and Sitter) were based on resampling the original sample of units. All four interval estimation methods performed poorly. On average, bootstrap confidence interval estimates underestimated the parametric totals, resulting in empirical coverages lower than the set confidence level. Coverages for the normal method depended on initial sample sizes and population. In general, if confidence interval estimates are required under adaptive cluster sampling, we recommend using bootstrap interval estimation with the Hansen - Hurwitz type estimator instead of interval estimation with the Horvitz - Thompson type estimator.
引用
收藏
页码:755 / 764
页数:10
相关论文
共 50 条
  • [1] Bootstrap confidence intervals for adaptive cluster sampling
    Christman, MC
    [J]. BIOMETRICS, 2000, 56 (02) : 503 - 510
  • [2] Confidence interval estimation under inverse sampling
    Zou, G. Y.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (01) : 55 - 64
  • [3] Bootstrap confidence interval estimation of mean via ranked set sampling linear regression
    Hui, TP
    Modarres, R
    Zheng, G
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2005, 75 (07) : 543 - 553
  • [4] Confidence interval estimation by bootstrap method for uncertainty quantification using random sampling method
    Endo, Tomohiro
    Watanabe, Tomoaki
    Yamamoto, Akio
    [J]. JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2015, 52 (7-8) : 993 - 999
  • [5] Bootstrap confidence interval estimation in generalized nonlinear models
    Jeong, Haesu
    Kim, Young Min
    Bang, Ye Jin
    Seo, Songwon
    Lee, Won Jin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [6] Bootstrap confidence intervals for adaptive cluster sampling design based on Horvitz–Thompson type estimators
    Mohammad Mohammadi
    Mohammad Salehi
    J. N. K. Rao
    [J]. Environmental and Ecological Statistics, 2014, 21 : 351 - 371
  • [7] Coefficient Alpha Bootstrap Confidence Interval Under Nonnormality
    Padilla, Miguel A.
    Divers, Jasmin
    Newton, Matthew
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2012, 36 (05) : 331 - 348
  • [8] On confidence interval estimation of normal percentiles
    Zili Zhang
    Saralees Nadarajah
    [J]. Japanese Journal of Statistics and Data Science, 2018, 1 (2) : 373 - 391
  • [9] Confidence interval estimation of a normal percentile
    Nadarajah, Saralees
    [J]. AMERICAN STATISTICIAN, 2008, 62 (02): : 186 - 187
  • [10] Confidence interval estimation of a normal percentile
    Chakraborti, S.
    Li, J.
    [J]. AMERICAN STATISTICIAN, 2007, 61 (04): : 331 - 336