Multiplicity and invariants in birational geometry

被引:4
|
作者
Shibata, Kohsuke [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Multiplicity; Log canonical threshold; Minimal log discrepancy; Complete intersection rings; SINGULARITIES; DISCREPANCY;
D O I
10.1016/j.jalgebra.2016.11.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multiplicity of a point on a variety is a fundamental in-variant to estimate how the singularity is bad. It is introduced in a purely algebraic context. On the other hand, we can also attach to the singularity the log canonical threshold and the minimal log discrepancy, which are introduced in a birational theoretic context. In this paper, we show bounds of the multiplicity by functions of these birational invariants for a singularity of locally a complete intersection. As an application, we obtain the affirmative answer to Watanabe's conjecture on the multiplicity of canonical singularity of locally a complete intersection up to dimension 32. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 185
页数:25
相关论文
共 50 条
  • [1] ON THE GEOMETRY, INVARIANTS AND SYMMETRIES OF SOME 4D-BIRATIONAL MAPPINGS
    Carstea, A. S.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (02): : 419 - 455
  • [2] BIRATIONAL INVARIANTS OF RATIONAL SURFACES
    SKOROBOGATOV, AN
    MATHEMATICAL NOTES, 1986, 39 (5-6) : 404 - 409
  • [3] Motivic invariants of birational maps
    Lin, Hsueh-Yung
    Shinder, Evgeny
    ANNALS OF MATHEMATICS, 2024, 199 (01) : 445 - 478
  • [4] ON INVARIANTS WITH MULTIPLICITY
    ABERG, H
    COMMUNICATIONS IN ALGEBRA, 1990, 18 (08) : 2485 - 2495
  • [5] Birational geometry of surfaces
    Ciro Ciliberto
    Thomas Dedieu
    Flaminio Flamini
    Rita Pardini
    Bollettino dell'Unione Matematica Italiana, 2018, 11 (1) : 1 - 3
  • [6] Birational geometry of surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    Flamini, Flaminio
    Pardini, Rita
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2018, 11 (01): : 1 - 3
  • [7] Symplectic Birational Geometry
    Li, Tian-Jun
    Ruan, Yongbin
    NEW PERSPECTIVES AND CHALLENGES IN SYMPLECTIC FIELD THEORY, 2009, 49 : 307 - +
  • [8] BIRATIONAL GEOMETRY OF QUADRICS
    Totaro, Burt
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (02): : 253 - 276
  • [9] BIRATIONAL INVARIANTS OF ALGEBRAIC-VARIETIES
    MANIVEL, L
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 458 : 63 - 91
  • [10] On certain birational invariants of the Fermat curves
    Kunz, E.
    Waldi, R.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (01) : 63 - 80