Transmutation kernels for the little q-Jacobi function transform

被引:4
|
作者
Koelink, E
Rosengren, H
机构
[1] Delft Univ Technol, Fac Informatietechnol Syst, Afd Toegepaste Wiskundige Anal, NL-2600 GA Delft, Netherlands
[2] Chalmers Univ Technol, SE-41296 Gothenburg, Sweden
[3] Univ Gothenburg, Dept Math, SE-41296 Gothenburg, Sweden
关键词
summation formula; transmutation kernels; product formula; little q-Jacobi function; intertwiner; fractional q-integral operator;
D O I
10.1216/rmjm/1030539694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The little q-Jacobi function transform depends on three parameters. An explicit expression as a sum of two very well-poised W-8(7)-series is derived for the dual transmutation kernel relating little q-Jacobi function transforms for different parameter sets. A product formula for the dual transmutation kernel is obtained. For the inverse transform, the transmutation kernel is given as a (3)phi(2)-series, and a product formula as a finite sum is derived. The transmutation kernel gives rise to intertwining operators for the second order hypergeometric q-difference operator, which generalize the intertwining operators arising from a Darboux factorization.
引用
收藏
页码:703 / 738
页数:36
相关论文
共 50 条
  • [1] The big q-Jacobi function transform
    Koelink, E
    Stokman, JV
    [J]. CONSTRUCTIVE APPROXIMATION, 2003, 19 (02) : 191 - 235
  • [2] REPRODUCING KERNELS FOR Q-JACOBI POLYNOMIALS
    ALSALAM, WA
    ISMAIL, MEH
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 67 (01) : 105 - 110
  • [3] Multiple little q-Jacobi polynomials
    Postelmans, K
    Van Assche, W
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 361 - 375
  • [4] Multivariable big and little q-Jacobi polynomials
    Stokman, JV
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (02) : 452 - 480
  • [5] On ladder operators for little q-Jacobi polynomials and their generalizations
    Filipuk, Galina
    Haneczok, Maciej
    [J]. 2013 15TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2013), 2014, : 97 - 103
  • [6] Matrix-valued little q-Jacobi polynomials
    Aldenhoven, Noud
    Koelink, Erik
    de los Rios, Ana M.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2015, 193 : 164 - 183
  • [7] The Vector-Valued Big q-Jacobi Transform
    Wolter Groenevelt
    [J]. Constructive Approximation, 2009, 29 : 85 - 127
  • [8] The Vector- Valued Big q-Jacobi Transform
    Groenevelt, Wolter
    [J]. CONSTRUCTIVE APPROXIMATION, 2009, 29 (01) : 85 - 127
  • [9] Little and big q-Jacobi polynomials and the Askey–Wilson algebra
    Pascal Baseilhac
    Xavier Martin
    Luc Vinet
    Alexei Zhedanov
    [J]. The Ramanujan Journal, 2020, 51 : 629 - 648
  • [10] On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials
    Atakishiyev, NM
    Klimyk, AU
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) : 246 - 257