Imaging Objects with Coded Apertures, Utilising a Laser Wakefield X-Ray Source

被引:0
|
作者
Selwood, M. P. [1 ]
Heathcote, R. [2 ]
Murphy, C. D. [1 ]
机构
[1] Univ York, York Plasma Inst, Dept Phys, York YO10 5DQ, N Yorkshire, England
[2] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England
来源
X-RAY LASERS 2018 | 2020年 / 241卷
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
BEAMS;
D O I
10.1007/978-3-030-35453-4_19
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Laser wakefield acceleration (LWFA) (Tajima and Dawson, P Rev Lett 43:267-270, 1979, [1]) is able to generate GeV electrons in millimetres of under dense plasma (Leemans et al., Nat Phys 2:696-699, 2006, [2]) due to the high fields whichmay be sustained. The electron beam is smaller than those from linear accelerators, and as such these bunches can be used to create hardX-ray imaging sources with micron resolution capability. The conventional pinhole imaging technique results in systems where improved resolution comes at the cost of flux reduction. At low flux, the resultant decrease in signal to noise ratio must be overcome by either a more powerful X-ray source or an increased integration time. Here, coded apertures are proposed as a viable imaging alternative for pinhole apertures without such adjustments. The imaging capabilities of coded apertures will be discussed and simulation results will be presented from ray-tracing algorithms.
引用
收藏
页码:125 / 130
页数:6
相关论文
共 50 条
  • [1] Coded apertures for x-ray scatter imaging
    Brady, David J.
    Marks, Daniel L.
    MacCabe, Kenneth P.
    O'Sullivan, Joseph A.
    [J]. APPLIED OPTICS, 2013, 52 (32) : 7745 - 7754
  • [2] Development of a laser-wakefield Thomson X-ray source for X-ray fluorescence imaging
    Staufer, T.
    Bohlen, S.
    Poder, K.
    Bruemmer, T.
    Blumendorf, F.
    Schmutzler, O.
    Meisel, M.
    Osterhoff, J.
    Gruener, F.
    [J]. LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS V, 2019, 11037
  • [3] X-ray phase contrast imaging of biological samples using a betatron X-ray source generated in a laser wakefield accelerator
    Chaulagain, U.
    Bohacek, K.
    Kozlova, M.
    Nejdl, J.
    Krus, M.
    Horny, V.
    Mahieu, B.
    Ta-Phuoc, K.
    [J]. LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS IV, 2017, 10240
  • [4] Modelling of a novel x-ray phase contrast imaging technique based on coded apertures
    Olivo, A.
    Speller, R.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (22): : 6555 - 6573
  • [5] On the way to full-field X-ray fluorescence spectroscopy imaging with coded apertures
    Kulow, Anico
    Buzanich, Ana Guilherme
    Reinholz, Uwe
    Streli, Christina
    Radtke, Martin
    [J]. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2020, 35 (02) : 347 - 356
  • [6] On the way to full-field X-ray fluorescence spectroscopy imaging with coded apertures
    Kulow, Anicó
    Buzanich, Ana Guilherme
    Reinholz, Uwe
    Streli, Christina
    Radtke, Martin
    [J]. Journal of Analytical Atomic Spectrometry, 2020, 35 (02): : 347 - 356
  • [7] Complementary coded apertures for 4-dimensional x-ray coherent scatter imaging
    Pang, Shuo
    Hassan, Mehadi
    Greenberg, Joel
    Holmgren, Andrew
    Krishnamurthy, Kalyani
    Brady, David
    [J]. OPTICS EXPRESS, 2014, 22 (19): : 22925 - 22936
  • [8] Fast optimization of coded apertures in X-ray computed tomography
    Mao, Tianyi
    Cuadros, Angela P.
    Ma, Xu
    He, Weiji
    Chen, Qian
    Arce, Gonzalo R.
    [J]. OPTICS EXPRESS, 2018, 26 (19): : 24461 - 24478
  • [9] X-ray laser wakefield acceleration in a nanotube
    Hakimi, Sahel
    Zhang, Xiaomei
    Lau, Calvin
    Taborek, Peter
    Dollar, Franklin
    Tajima, Toshiki
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (34):
  • [10] Laser wakefield acceleration: application to Betatron X- ray radiation production and X-ray imaging
    Fourmaux, S.
    Corde, S.
    Phuoc, K. Ta
    Lassonde, P.
    Payeur, S.
    Gnedyuk, S.
    Martin, F.
    Malka, V.
    Rousse, A.
    Kieffer, J. C.
    [J]. PHOTONICS NORTH 2012, 2012, 8412