New closed-form estimators for weighted Lindley distribution

被引:0
|
作者
Kim, Hyoung-Moon [1 ]
Jang, Yu-Hyeong [2 ]
机构
[1] Konkuk Univ, Dept Appl Stat, Seoul, South Korea
[2] Korea Univ, Dept Stat, Seoul, South Korea
关键词
Weighted Lindley distribution; Closed-form estimators; Maximum likelihood estimator; Bias correction; Asymptotic distribution; GENERALIZED LINDLEY; PARAMETERS; MODEL;
D O I
10.1007/s42952-020-00097-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose new closed-form estimators for two-parameter weighted Lindley (WL) distribution. These new estimators are derived from likelihood equations of power transformed WL distribution. They behave very similarly to maximum likelihood estimators (MLEs) and achieve consistency and asymptotic normality. Numerical results show that, unlike existing closed-form estimators, the new estimators are uniformly comparable to MLEs. In addition, to reduce biases of the new estimators in the case of small samples, we apply a bias-correction method to the new estimators, based on the approximate Cox-Snell formula. Our simulation studies indicate that this bias-correction method is effective in enhancing small-sample performance. Finally, we present three real data examples.
引用
收藏
页码:580 / 606
页数:27
相关论文
共 50 条
  • [1] New closed-form estimators for weighted Lindley distribution
    Hyoung-Moon Kim
    Yu-Hyeong Jang
    [J]. Journal of the Korean Statistical Society, 2021, 50 : 580 - 606
  • [2] New closed-form efficient estimators for a bivariate Weibull distribution
    Kim, Hyoung-Moon
    Jang, Yu-Hyeong
    Arnold, Barry C.
    Kim, Yu-Kwang
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (11) : 1716 - 1733
  • [3] New closed-form efficient estimators for the negative binomial distribution
    Zhao, Jun
    Kim, Hyoung-Moon
    [J]. STATISTICAL PAPERS, 2023, 64 (06) : 2119 - 2135
  • [4] New closed-form efficient estimators for the negative binomial distribution
    Jun Zhao
    Hyoung-Moon Kim
    [J]. Statistical Papers, 2023, 64 : 2119 - 2135
  • [5] Weighted closed-form estimators for blind source separation
    Zarzoso, V
    Herrmann, F
    Nandi, AK
    [J]. 2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 456 - 459
  • [6] Closed-form estimators and bias-corrected estimators for the Nakagami distribution
    Zhao, Jun
    Kim, SungBum
    Kim, Hyoung-Moon
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 308 - 324
  • [7] Closed-form estimators and bias-corrected estimators for the Nakagami distribution
    Zhao, Jun
    Kim, SungBum
    Kim, Hyoung-Moon
    [J]. Mathematics and Computers in Simulation, 2021, 185 : 308 - 324
  • [8] Efficient closed-form maximum a posteriori estimators for the gamma distribution
    Louzada, Francisco
    Ramos, Pedro Luiz
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (06) : 1134 - 1146
  • [9] Closed-form variance estimator for weighted propensity score estimators with survival outcome
    Hajage, David
    Chauvet, Guillaume
    Belin, Lisa
    Lafourcade, Alexandre
    Tubach, Florence
    De Rycke, Yann
    [J]. BIOMETRICAL JOURNAL, 2018, 60 (06) : 1151 - 1163
  • [10] New Closed Form Estimators for the Beta Distribution
    Nawa, Victor Mooto
    Nadarajah, Saralees
    [J]. MATHEMATICS, 2023, 11 (13)