New closed-form estimators for weighted Lindley distribution

被引:1
|
作者
Kim, Hyoung-Moon [1 ]
Jang, Yu-Hyeong [2 ]
机构
[1] Konkuk Univ, Dept Appl Stat, Seoul, South Korea
[2] Korea Univ, Dept Stat, Seoul, South Korea
关键词
Weighted Lindley distribution; Closed-form estimators; Maximum likelihood estimator; Bias correction; Asymptotic distribution; GENERALIZED LINDLEY; PARAMETERS; MODEL;
D O I
10.1007/s42952-020-00097-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose new closed-form estimators for two-parameter weighted Lindley (WL) distribution. These new estimators are derived from likelihood equations of power transformed WL distribution. They behave very similarly to maximum likelihood estimators (MLEs) and achieve consistency and asymptotic normality. Numerical results show that, unlike existing closed-form estimators, the new estimators are uniformly comparable to MLEs. In addition, to reduce biases of the new estimators in the case of small samples, we apply a bias-correction method to the new estimators, based on the approximate Cox-Snell formula. Our simulation studies indicate that this bias-correction method is effective in enhancing small-sample performance. Finally, we present three real data examples.
引用
收藏
页码:580 / 606
页数:27
相关论文
共 50 条
  • [1] New closed-form estimators for weighted Lindley distribution
    Hyoung-Moon Kim
    Yu-Hyeong Jang
    Journal of the Korean Statistical Society, 2021, 50 : 580 - 606
  • [2] New closed-form efficient estimators for a bivariate Weibull distribution
    Kim, Hyoung-Moon
    Jang, Yu-Hyeong
    Arnold, Barry C.
    Kim, Yu-Kwang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (11) : 1716 - 1733
  • [3] New closed-form efficient estimators for the negative binomial distribution
    Zhao, Jun
    Kim, Hyoung-Moon
    STATISTICAL PAPERS, 2023, 64 (06) : 2119 - 2135
  • [4] New closed-form efficient estimators for the negative binomial distribution
    Jun Zhao
    Hyoung-Moon Kim
    Statistical Papers, 2023, 64 : 2119 - 2135
  • [5] Weighted closed-form estimators for blind source separation
    Zarzoso, V
    Herrmann, F
    Nandi, AK
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 456 - 459
  • [6] New and fast closed-form efficient estimators for the negative multinomial distribution
    Zhao, Jun
    Lee, Yun-beom
    Kim, Hyoung-Moon
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025,
  • [7] Closed-form estimators and bias-corrected estimators for the Nakagami distribution
    Zhao, Jun
    Kim, SungBum
    Kim, Hyoung-Moon
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 308 - 324
  • [8] Closed-form estimators and bias-corrected estimators for the Nakagami distribution
    Zhao, Jun
    Kim, SungBum
    Kim, Hyoung-Moon
    Mathematics and Computers in Simulation, 2021, 185 : 308 - 324
  • [9] Novel closed-form point estimators for the beta distribution
    Chen, Piao
    Xiao, Xun
    STATISTICAL THEORY AND RELATED FIELDS, 2025, 9 (01) : 12 - 33
  • [10] Efficient closed-form maximum a posteriori estimators for the gamma distribution
    Louzada, Francisco
    Ramos, Pedro Luiz
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (06) : 1134 - 1146