Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle

被引:21
|
作者
Della Pietra, Francesco [1 ]
Di Blasio, Giuseppina [2 ]
Gavitone, Nunzia [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Univ Campania Luigi Vanvitelli, Viale Lincoln 5, I-81100 Caserta, Italy
关键词
Dirichlet eigenvalues; anisotropic operators; optimal estimates; TORSIONAL RIGIDITY; BOUNDS; INEQUALITY; SETS;
D O I
10.1515/anona-2017-0281
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue lambda(F) (p, Omega) of the anisotropic p-Laplacian, 1 < p < +infinity. Our aim is to enhance, by means of the P-function method, how it is possible to get several sharp estimates for lambda(F)(p, Omega) in terms of several geometric quantities associated to the domain. The P-function method is based on a maximum principle for a suitable function involving the eigenfunction and its gradient.
引用
收藏
页码:278 / 291
页数:14
相关论文
共 50 条
  • [1] Sharp estimates for the first Robin eigenvalue of nonlinear elliptic operators
    Della Pietra, Francesco
    Piscitelli, Gianpaolo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 386 : 269 - 293
  • [2] FIRST EIGENVALUE AND MAXIMUM PRINCIPLE FOR FULLY NONLINEAR SINGULAR OPERATORS
    Birindelli, Isabeau
    Demengel, Francoise
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2006, 11 (01) : 91 - 119
  • [3] On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators
    Della Pietra, Francesco
    Gavitone, Nunzia
    Piscitelli, Gianpaolo
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 155 : 10 - 32
  • [4] Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators
    Berestycki, Henri
    Dolcetta, Italo Capuzzo
    Porretta, Alessio
    Rossi, Luca
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (05): : 1276 - 1293
  • [5] First eigenvalue estimates of Dirichlet-to-Neumann operators on graphs
    Hua, Bobo
    Huang, Yan
    Wang, Zuoqin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [6] First eigenvalue estimates of Dirichlet-to-Neumann operators on graphs
    Bobo Hua
    Yan Huang
    Zuoqin Wang
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [7] On the maximum principle for elliptic operators
    Caso, L
    Cavaliere, P
    Transirico, M
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (03): : 405 - 418
  • [8] The principal eigenvalue and maximum principle for second order elliptic operators on Riemannian manifolds
    Padilla, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 205 (02) : 285 - 312
  • [9] ELEMENTARY GEOMETRIC APPLICATIONS OF A MAXIMUM PRINCIPLE FOR NONLINEAR ELLIPTIC OPERATORS
    KOUTROUFIOTIS, D
    ARCHIV DER MATHEMATIK, 1973, 24 (01) : 97 - 99
  • [10] On the first Dirichlet eigenvalue of elliptic operator
    Qingdao Daxue Xuebao(Gongcheng Jishuban)/Journal of Qingdao University (Engineering & Technology Edition), 1998, 13 (03): : 74 - 75