Numerical pump-probe experiments of laser-excited silicon in nonequilibrium phase

被引:69
|
作者
Sato, S. A. [1 ]
Yabana, K. [1 ,2 ]
Shinohara, Y. [1 ,3 ]
Otobe, T. [4 ]
Bertsch, G. F. [5 ,6 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan
[2] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
[3] Max Planck Inst Mikrostrukturphys, D-06112 Halle, Germany
[4] JAEA, Kansai Photon Sci Inst, Kyoto 6190615, Japan
[5] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[6] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; REAL-SPACE; TIME; DIELECTRICS;
D O I
10.1103/PhysRevB.89.064304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate the dielectric response of crystalline silicon following irradiation by a high-intensity laser pulse, modeling the dynamics by the time-dependentKohn-Sham equations in the presence of the laser field. Pump-probe measurements of the response are numerically simulated by including both pump and probe externals fields in the simulation. As expected, the excited silicon shows features of an electron-hole plasma of nonequilibrium phase in its response, characterized by a negative divergence in the real part of the dielectric function at small frequencies. The response to the probe pulse depends on the polarization of the pump pulse. We also find that the imaginary part of the dielectric function can be negative, particularly for the parallel polarization of pump and probe fields. We compare the calculated response with a simple Drude model. The real part of the dielectric function is well fitted by the model, treating the effective mass as a fitting parameter while taking electron density from the calculation. The fitted effective masses are consistent with carrier-band dispersions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] NUMERICAL EVALUATION OF OPTICAL PUMP-PROBE EXPERIMENTS
    WINTNER, E
    JOURNAL OF APPLIED PHYSICS, 1985, 57 (05) : 1533 - 1537
  • [2] A new sample holder for laser-excited pump-probe magnetic measurements on a Focus photoelectron emission microscope
    Miguel, Jorge
    Bernien, Matthias
    Bayer, Daniela
    Sanchez-Barriga, Jaime
    Kronast, Florian
    Aeschlimann, Martin
    Duerr, Hermann A.
    Kuch, Wolfgang
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (03):
  • [3] PHASE-DEPENDENT AMPLIFICATION IN PUMP-PROBE EXPERIMENTS
    FAIN, B
    KHIDEKEL, V
    LIN, SH
    PHYSICAL REVIEW A, 1994, 49 (02): : 1498 - 1501
  • [4] Nonequilibrium electron dynamics in pump-probe spectroscopy: Role of excited phonon populations
    Abdurazakov, O.
    Nevola, D.
    Rustagi, A.
    Freericks, J. K.
    Dougherty, D. B.
    Kemper, A. F.
    PHYSICAL REVIEW B, 2018, 98 (24)
  • [5] Two-channel model for nonequilibrium thermal transport in pump-probe experiments
    Wilson, R. B.
    Feser, Joseph P.
    Hohensee, Gregory T.
    Cahill, David G.
    PHYSICAL REVIEW B, 2013, 88 (14):
  • [6] A tool for alignment of multiple laser beams in pump-probe experiments
    Karimullin, Kamil
    Knyazev, Mikhail
    Eremchev, Ivan
    Vainer, Yuri
    Naumov, Andrei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (02)
  • [7] VEGA laser facility beamlines management for pump-probe experiments
    Mendez, C.
    Garcia, Varela E.
    Hernandez, I.
    Ajates, J.
    Pisonero, J. D.
    Sagredo, J. L.
    Olivar, M.
    Roso, L.
    FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS, 2019, 11207
  • [8] Two-color pump-probe experiments on silicon inverse opals
    Becker, C.
    Linden, S.
    von Freymann, G.
    Tetreault, N.
    Vekris, E.
    Kitaev, V.
    Ozin, G. A.
    Wegener, M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (10): : 2354 - 2357
  • [9] Pump-probe experiments at 1.54 μm on silicon-rich silicon oxide waveguides
    Forcales, M.
    Smith, N.J.
    Elliman, R.G.
    Journal of Applied Physics, 2006, 100 (01):
  • [10] Attosecond XFEL for pump-probe experiments
    Kang, Heung-Sik
    Ko, In Soo
    NATURE PHOTONICS, 2020, 14 (01) : 7 - 8