Text-mining Similarity Approximation Operators for Opinion Mining in BI tools

被引:0
|
作者
Kaplanski, Pawel [1 ]
Rizun, Nina [1 ]
Taranenko, Yurii [2 ]
Seganti, Alessandro [3 ]
机构
[1] Gdansk Univ Technol, Dept Appl Informat Management, Fac Econ & Management, Gdansk, Poland
[2] Alfred Nobel Univ, Dnipropetrovsk Dept Appl Linguist & Methods Teach, Dnepropetrovsk, Ukraine
[3] Cognitum, Warsaw, Poland
关键词
Business Intelligence; NLP; Natural Language Interface Database; Natural Query Language; Controlled Natural Language; CNL; Latent Semantic Analysis; LSA; Social Network Analysis; SNA; Ontology;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The concept of the Text-mining Similarity Approximation Operators for Opinion Mining as extensions to Natural Language Interface Database is defined. The new operators: "keywords of" dimension; subsetting operator "about C is q"; aggregation operator "by similar C" are proposed. These operators are based on the Latent Semantic Analysis and Social Network Analysis.
引用
收藏
页码:121 / 140
页数:20
相关论文
共 50 条
  • [1] USE OF TEXT-MINING TOOLS FOR SYSTEMATIC REVIEWS
    Paynter, R. A.
    Banez, L. L.
    Berliner, E.
    Erinoff, E.
    Lege-Matsuura, J. M.
    Potter, S.
    [J]. VALUE IN HEALTH, 2016, 19 (03) : A108 - A108
  • [2] Circle graphs: New visualization tools for text-mining
    Aumann, Y
    Feldman, R
    Ben Yehuda, Y
    Landau, D
    Liphstat, O
    Schler, Y
    [J]. PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY, 1999, 1704 : 277 - 282
  • [3] tmBioC: improving interoperability of text-mining tools with BioC
    Khare, Ritu
    Wei, Chih-Hsuan
    Mao, Yuqing
    Leaman, Robert
    Lu, Zhiyong
    [J]. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2014,
  • [4] Text-Mining and Neuroscience
    Ambert, Kyle H.
    Cohen, Aaron M.
    [J]. BIOINFORMATICS OF BEHAVIOR: PART 1, 2012, 103 : 109 - 132
  • [5] Text-Mining the Voice of the People
    Evangelopoulos, Nicholas
    Visinescu, Lucian
    [J]. COMMUNICATIONS OF THE ACM, 2012, 55 (02) : 55 - 62
  • [6] Functional evaluation of out-of-the-box text-mining tools for data-mining tasks
    Jung, Kenneth
    LePendu, Paea
    Iyer, Srinivasan
    Bauer-Mehren, Anna
    Percha, Bethany
    Shah, Nigam H.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (01) : 121 - 131
  • [7] Maximizing text-mining performance
    Weiss, SM
    Apte, C
    Damerau, FJ
    Johnson, DE
    Oles, FJ
    Goetz, T
    Hampp, T
    [J]. IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1999, 14 (04): : 63 - 69
  • [8] Text-mining assisted regulatory annotation
    Aerts, Stein
    Haeussler, Maximilian
    van Vooren, Steven
    Griffith, Obi L.
    Hulpiau, Paco
    Jones, Steven J. M.
    Montgomery, Stephen B.
    Bergman, Casey M.
    [J]. GENOME BIOLOGY, 2008, 9 (02)
  • [9] Text-mining: Application development challenges
    Varadarajan, S
    Kasravi, K
    Feldman, R
    [J]. APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS X, 2003, : 247 - 260
  • [10] Text-mining based journal splitting
    Lin, XF
    [J]. SEVENTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2003, : 1075 - 1079