SUBSPACE CLUSTERING VIA INDEPENDENT SUBSPACE ANALYSIS NETWORK

被引:0
|
作者
Su, Chunchen [1 ,2 ]
Wu, Zongze [2 ]
Yin, Ming [2 ]
Li, KaiXin [1 ]
Sun, Weijun [2 ]
机构
[1] South China Univ Technol, Guangzhou 510641, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
关键词
Subspace clustering; Independent subspace analysis; Prior; Sparse representation;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Previous work on image clustering focused on seeking a low dimensional structure from the high-dimensional image data by a shallow linear model, such as sparse subspace clustering (SSC) or low-rank representation (LRR). The recent advance of deep learning shows its superiority via handling data with nonlinear structure, i.e., sparse auto-encoder and independent subspace analysis(ISA), etc. However, most of this type of methods may ignore lots of useful information embedded in the original data. To this end, we propose a novel unsupervised learning algorithm via ISA incorporating the subspace structure within data. Specifically, we adopt the ISA to learn local translation invariant feature from data and integrate a prior subspace information into the output of the network simultaneously. This method performs an impressive powerful ability to learn the nature of data. By evaluating on public databases, CMU-PIE and ORL, the experimental results show that the proposed approach achieves better clustering results compared with the state-of-the-art ones.
引用
收藏
页码:4217 / 4221
页数:5
相关论文
共 50 条
  • [1] Subspace clustering via stacked independent subspace analysis networks with sparse prior information
    Wu, Zongze
    Su, Chunchen
    Yin, Ming
    Ren, Zhigang
    Xie, Shengli
    [J]. PATTERN RECOGNITION LETTERS, 2021, 146 : 165 - 171
  • [2] Generalized Independent Subspace Clustering
    Ye, Wei
    Maurus, Samuel
    Hubig, Nina
    Plant, Claudia
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 569 - 578
  • [3] Deep Clustering via Weighted k-Subspace Network
    Huang, Weitian
    Yin, Ming
    Li, Jianzhong
    Xie, Shengli
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (11) : 1628 - 1632
  • [4] SUBSPACE CLUSTERING VIA THRESHOLDING AND SPECTRAL CLUSTERING
    Heckel, Reinhard
    Boelcskei, Helmut
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3263 - 3267
  • [5] Subspace Clustering via Tangent Cones
    Jalali, Amin
    Willett, Rebecca
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [6] Maximum Entropy Subspace Clustering Network
    Peng, Zhihao
    Jia, Yuheng
    Liu, Hui
    Hou, Junhui
    Zhang, Qingfu
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2199 - 2210
  • [7] Robust Subspace Clustering via Thresholding
    Heckel, Reinhard
    Boelcskei, Helmut
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 6320 - 6342
  • [8] Subspace Clustering via Good Neighbors
    Yang, Jufeng
    Liang, Jie
    Wang, Kai
    Rosin, Paul L.
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1537 - 1544
  • [9] Noisy Subspace Clustering via Thresholding
    Heckel, Reinhard
    Boelcskei, Helmut
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1382 - 1386
  • [10] Independent subspace analysis on innovations
    Póczos, B
    Takács, R
    Lorincz, A
    [J]. MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 698 - 706