BAYESIAN OPTIMAL COMPRESSED SENSING WITHOUT PRIORS: PARAMETRIC SURE APPROXIMATE MESSAGE PASSING

被引:0
|
作者
Guo, Chunli [1 ]
Davies, Mike E. [1 ]
机构
[1] Univ Edinburgh, Sch Engn & Elect, Edinburgh EH8 9YL, Midlothian, Scotland
关键词
Compressed sensing; approximate message passing; SURE estimator; denoising;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It has been shown that the Bayesian optimal approximate message passing (AMP) technique achieves the minimum mean-squared error (MMSE) optimal compressed sensing (CS) recovery. However, the prerequisite of the signal prior makes it often impractical. To address this dilemma, we propose the parametric SURE-AMP algorithm. The key feature is it uses the Stein's unbiased risk estimate (SURE) based parametric family of MMSE estimator for the CS denoising. Given that the optimization of the estimator and the calculation of its mean squared error purely depend on the noisy data, there is no need of the signal prior. The weighted sum of piecewise kernel functions is used to form the parametric estimator. Numerical experiments on both Bernoulli-Gaussian and k-dense signal justify our proposal.
引用
收藏
页码:1347 / 1351
页数:5
相关论文
共 50 条
  • [1] Near Optimal Compressed Sensing Without Priors: Parametric SURE Approximate Message Passing
    Guo, Chunli
    Davies, Mike E.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (08) : 2130 - 2141
  • [2] On Introducing Damping to Bayes Optimal Approximate Message Passing for Compressed Sensing
    Mimura, Kazushi
    [J]. 2015 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2015, : 659 - 662
  • [3] Quantization of Compressed Sensing Measurements using Analysis-by-Synthesis with Bayesian-Optimal Approximate Message Passing
    Musa, Osman
    Goertz, Norbert
    [J]. 2015 IEEE 16TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2015, : 510 - 514
  • [4] Compressed Sensing With Upscaled Vector Approximate Message Passing
    Skuratovs, Nikolajs
    Davies, Michael E.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4818 - 4836
  • [5] VECTOR APPROXIMATE MESSAGE PASSING FOR QUANTIZED COMPRESSED SENSING
    Franz, Daniel
    Kuehn, Volker
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 341 - 345
  • [6] Performance Analysis of Approximate Message Passing for Distributed Compressed Sensing
    Hannak, Gabor
    Perelli, Alessandro
    Goertz, Norbert
    Matz, Gerald
    Davies, Mike E.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (05) : 857 - 870
  • [7] On Approximate Message Passing for Unsourced Access with Coded Compressed Sensing
    Amalladinne, Vamsi K.
    Pradhan, Asit Kumar
    Rush, Cynthia
    Chamberland, Jean-Francois
    Narayanan, Krishna R.
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2995 - 3000
  • [8] WEIGHTED-DAMPED APPROXIMATE MESSAGE PASSING FOR COMPRESSED SENSING
    Wang, Shengchu
    Li, Yunzhou
    Gao, Zhen
    Wang, Jing
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5865 - 5869
  • [9] Location constrained approximate message passing for compressed sensing MRI
    Sung, Kyunghyun
    Daniel, Bruce L.
    Hargreaves, Brian A.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (02) : 370 - 381
  • [10] Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing
    Donoho, David L.
    Javanmard, Adel
    Montanari, Andrea
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7434 - 7464