Adaptive multi-teacher multi-level knowledge distillation

被引:0
|
作者
Liu, Yuang [1 ]
Zhang, Wei [1 ]
Wang, Jun [1 ]
机构
[1] East China Normal Univ, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R China
关键词
Knowledge distillation; Adaptive learning; Multi-teacher; ENSEMBLE;
D O I
10.1016/j.neucom.2020.07.048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge distillation (KD) is an effective learning paradigm for improving the performance of light-weight student networks by utilizing additional supervision knowledge distilled from teacher networks. Most pioneering studies either learn from only a single teacher in their distillation learning methods, neglecting the potential that a student can learn from multiple teachers simultaneously, or simply treat each teacher to be equally important, unable to reveal the different importance of teachers for specific examples. To bridge this gap, we propose a novel adaptive multi-teacher multi-level knowledge distillation learning framework (AMTML-KD), which consists two novel insights: (i) associating each teacher with a latent representation to adaptively learn instance-level teacher importance weights which are leveraged for acquiring integrated soft-targets (high-level knowledge) and (ii) enabling the intermediate-level hints (intermediate-level knowledge) to be gathered from multiple teachers by the proposed multi-group hint strategy. As such, a student model can learn multi-level knowledge from multiple teachers through AMTML-KD. Extensive results on publicly available datasets demonstrate the proposed learning framework ensures student to achieve improved performance than strong competitors. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 113
页数:8
相关论文
共 50 条
  • [1] Adaptive multi-teacher multi-level knowledge distillation
    Liu, Yuang
    Zhang, Wei
    Wang, Jun
    [J]. Neurocomputing, 2021, 415 : 106 - 113
  • [2] Adaptive Multi-Teacher Knowledge Distillation with Meta-Learning
    Zhang, Hailin
    Chen, Defang
    Wang, Can
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1943 - 1948
  • [3] ATMKD: adaptive temperature guided multi-teacher knowledge distillation
    Lin, Yu-e
    Yin, Shuting
    Ding, Yifeng
    Liang, Xingzhu
    [J]. MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [4] Reinforced Multi-Teacher Selection for Knowledge Distillation
    Yuan, Fei
    Shou, Linjun
    Pei, Jian
    Lin, Wutao
    Gong, Ming
    Fu, Yan
    Jiang, Daxin
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14284 - 14291
  • [5] Correlation Guided Multi-teacher Knowledge Distillation
    Shi, Luyao
    Jiang, Ning
    Tang, Jialiang
    Huang, Xinlei
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 562 - 574
  • [6] Knowledge Distillation via Multi-Teacher Feature Ensemble
    Ye, Xin
    Jiang, Rongxin
    Tian, Xiang
    Zhang, Rui
    Chen, Yaowu
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 566 - 570
  • [7] CONFIDENCE-AWARE MULTI-TEACHER KNOWLEDGE DISTILLATION
    Zhang, Hailin
    Chen, Defang
    Wang, Can
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4498 - 4502
  • [8] Knowledge Distillation via Multi-Teacher Feature Ensemble
    Ye, Xin
    Jiang, Rongxin
    Tian, Xiang
    Zhang, Rui
    Chen, Yaowu
    [J]. IEEE Signal Processing Letters, 2024, 31 : 566 - 570
  • [9] Decoupled Multi-teacher Knowledge Distillation based on Entropy
    Cheng, Xin
    Tang, Jialiang
    Zhang, Zhiqiang
    Yu, Wenxin
    Jiang, Ning
    Zhou, Jinjia
    [J]. 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [10] Multi-teacher knowledge distillation based on joint Guidance of Probe and Adaptive Corrector
    Shang, Ronghua
    Li, Wenzheng
    Zhu, Songling
    Jiao, Licheng
    Li, Yangyang
    [J]. NEURAL NETWORKS, 2023, 164 : 345 - 356