Learning State Switching for Multi-sensor Integration

被引:0
|
作者
Saha, Homagni [1 ]
Tan, Sin Yong [1 ]
Jiang, Zhanhong [2 ]
Sarkar, Soumik [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[2] Johnson Controls, Milwaukee, WI 53202 USA
关键词
SYSTEMS;
D O I
10.1109/icc47138.2019.9123175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper takes a fresh approach towards multisensor multi-agent integration for achieving improved performance using a control theoretic view of "state-switching". The state-switching problem is formulated as a multi-agent reinforcement learning task for maximizing expected payoffs over time solved using a value iteration algorithm. Specifically, we use a problem of tracking an unknown object with unknown (motion) dynamics using manipulators, defined based on the well-known sawyer one-handed manipulator. We demonstrate that our multi-agent reinforcement learning based state switching algorithm shows superior performance compared to using individual sensors. Our trained agent is also further validated by transferring from simulation to a real experimental setup.
引用
收藏
页码:232 / 237
页数:6
相关论文
共 50 条
  • [1] Secure state estimation for multi-sensor CPS with distributed detection and alarm switching
    Yang, Biao
    He, Guang
    Xin, Liang
    Long, Zhi-Qiang
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (11): : 2121 - 2130
  • [2] Learning to combine multi-sensor information for context dependent state estimation
    Ravet, Alexandre
    Lacroix, Simon
    Hattenberger, Gautier
    Vandeportaele, Bertrand
    [J]. 2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 5221 - 5226
  • [3] Multi-sensor data integration for personal navigation
    Mukherjee, Tamal
    [J]. 2013 IEEE SENSORS, 2013, : 778 - 778
  • [4] Adaptive multi-sensor in integration for mine detection
    Baker, JE
    [J]. DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS II, 1997, 3079 : 452 - 466
  • [5] Multi-sensor integration for unmanned terrain modeling
    Sukumar, Sreenivas R.
    Yu, Sijie
    Page, David L.
    Koschan, Andreas F.
    Abidi, Mongi A.
    [J]. UNMANNED SYSTEMS TECHNOLOGY VIII, PTS 1 AND 2, 2006, 6230
  • [6] Multi-sensor integration management in the earth observation sensor web: State-of-the-art and research challenges
    Zhang, Yunbo
    Li, Jie
    Duan, Mu
    Chen, Wenjie
    del Rio, Joaquin
    Zhang, Xiang
    Wang, Ke
    Liang, Steve H. L.
    Chen, Zeqiang
    Chen, Nengcheng
    Hu, Chuli
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 125
  • [7] Multi-sensor switching strategy for automotive longitudinal control
    Martinez, John J.
    Zhuo, Xiang W.
    De Dona, Jose A.
    Seron, Marfa M.
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 4652 - +
  • [9] The development of a wafer prealigner based on the multi-sensor integration
    Huang, Chunxia
    Cao, Qixin
    Fu, Zhuang
    Leng, Chuntao
    [J]. ASSEMBLY AUTOMATION, 2008, 28 (01) : 77 - 82
  • [10] A virtual reality environment for multi-sensor data integration
    Papson, S
    Oagaro, J
    Polikar, R
    Chen, JC
    Schmalzel, JL
    Mandayam, S
    [J]. PROCEEDINGS OF THE ISA/IEEE SENSORS FOR INDUSTRY CONFERENCE, 2004, : 116 - 122