Estimation in nonstationary random coefficient autoregressive models

被引:38
|
作者
Berkes, Istvan [1 ]
Horvath, Lajos [2 ]
Ling, Shiqing [3 ]
机构
[1] Graz Univ Technol, Graz, Austria
[2] Univ Utah, Salt Lake City, UT 84112 USA
[3] Univ Sci & Technol, Hefei, Peoples R China
关键词
Random coefficient model; quasi-maximum likelihood; asymptotic normality; consistency; law of large numbers; Primary; 62F05; secondary; 62M10; GARCH;
D O I
10.1111/j.1467-9892.2009.00615.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the estimation of parameters in the random coefficient autoregressive (RCA) model X(k) = (phi + b(k))X(k-1) + e(k), where (phi, omega(2), Sigma(2)) is the parameter of the process. We consider a nonstationary RCA process satisfying E log vertical bar phi + b(0)vertical bar >= 0 and show that Sigma(2) cannot be estimated by the quasi-maximum likelihood method. The asymptotic normality of the quasi-maximum likelihood estimator for (phi, omega(2)) is proven so that the unit root problem does not exist in the RCA model.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 50 条