Stable boundary element method/finite element method procedure for dynamic fluid-structure interactions

被引:16
|
作者
Yu, GY [1 ]
Lie, ST [1 ]
Fan, SC [1 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Struct Engn, Singapore 639798, Singapore
关键词
fluid-structure interaction; stability; coupling;
D O I
10.1061/(ASCE)0733-9399(2002)128:9(909)
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The stability problem has prevented the application of the boundary element method/finite element method (BEM/FEM) coupling procedure in dynamic fluid-structure interaction problems for the last 2 decades. It has been proved that the linear theta method can make a significant stability improvement for the time domain BEM scheme. With the use of the linear theta method, the BEM/FEM coupling procedure is applied to two-dimensional time domain fluid-structure interaction problems. The fluid domain is acoustic and modeled by taking advantage of the BEM scheme that is suitable to either finite or infinite domains. An internal source has been considered in BEM formulations, and no artificial boundary needs to be introduced for the infinite domain. The structure is modeled by finite elements that can be either linear or nonlinear. Two classical examples are given to show the validity of the coupling procedure in fluid-structure interaction problems and the significant stability improvement given by the linear theta method to the BEM/FEM coupling procedure.
引用
收藏
页码:909 / 915
页数:7
相关论文
共 50 条
  • [1] Dynamic fluid-structure interaction analysis using boundary finite element method-finite element method
    Fan, SC
    Li, SM
    Yu, GY
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2005, 72 (04): : 591 - 598
  • [2] Immersed finite element method for fluid-structure interactions
    Zhang, L. T.
    Gay, M.
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2007, 23 (06) : 839 - 857
  • [3] An energy stable monolithic Eulerian fluid-structure finite element method
    Hecht, Frederic
    Pironneau, Olivier
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 85 (07) : 430 - 446
  • [4] Numerical simulation of fluid-structure interactions with stabilized finite element method
    Svacek, Petr
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2017, 113 : 96 - 107
  • [5] Numerical simulation of fluid-structure interactions with stabilized finite element method
    Svacek, Petr
    [J]. EFM15 - EXPERIMENTAL FLUID MECHANICS 2015, 2016, 114
  • [6] The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method
    Yang, Jubiao
    Yu, Feimi
    Krane, Michael
    Zhang, Lucy T.
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2018, 76 : 135 - 152
  • [7] A finite-element/boundary-element method for large-displacement fluid-structure interaction
    van Opstal, T. M.
    van Brummelen, E. H.
    de Borst, R.
    Lewis, M. R.
    [J]. COMPUTATIONAL MECHANICS, 2012, 50 (06) : 779 - 788
  • [8] A finite-element/boundary-element method for large-displacement fluid-structure interaction
    T. M. van Opstal
    E. H. van Brummelen
    R. de Borst
    M. R. Lewis
    [J]. Computational Mechanics, 2012, 50 : 779 - 788
  • [9] Fluid-structure interaction using the particle finite element method
    Idelsohn, SR
    Oñate, E
    Del Pin, F
    Calvo, N
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) : 2100 - 2123
  • [10] Fluid-structure interactions of internal pressure pipeline using the hierarchical finite element method
    Hicham, Fakiri
    Abdelhamid, Hadjoui
    Mohammed, O. Nabil
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (09)