TESTING CONDITIONAL INDEPENDENCE RESTRICTIONS

被引:16
|
作者
Linton, Oliver [1 ]
Gozalo, Pedro [2 ]
机构
[1] Univ Cambridge, Fac Econ, Cambridge CB3 9DD, England
[2] Brown Univ, Dept Community Hlth, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Conditional independence; Empirical distribution; Independence; Nonparametric; Smooth bootstrap; Test; WEAK-CONVERGENCE; ARMA MODELS; ASYMPTOTICS; ESTIMATORS; REGRESSION; SERIES; SCORE;
D O I
10.1080/07474938.2013.825135
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a nonparametric test of the hypothesis of conditional independence between variables of interest based on a generalization of the empirical distribution function. This hypothesis is of interest both for model specification purposes, parametric and semiparametric, and for nonmodel-based testing of economic hypotheses. We allow for both discrete variables and estimated parameters. The asymptotic null distribution of the test statistic is a functional of a Gaussian process. A bootstrap procedure is proposed for calculating the critical values. Our test has power against alternatives at distance n(-1/2) from the null; this result holding independently of dimension. Monte Carlo simulations provide evidence on size and power.
引用
收藏
页码:523 / 552
页数:30
相关论文
共 50 条
  • [1] Testing conditional moment restrictions
    Tripathi, G
    Kitamura, Y
    [J]. ANNALS OF STATISTICS, 2003, 31 (06): : 2059 - 2095
  • [2] Linear regression models under conditional independence restrictions
    Causeur, D
    Dhorne, T
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) : 637 - 650
  • [3] Conditional Independence in Testing Bayesian Networks
    Shen, Yujia
    Huang, Haiying
    Choi, Arthur
    Darwiche, Adnan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] Normalizing flows for conditional independence testing
    Duong, Bao
    Nguyen, Thin
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (01) : 357 - 380
  • [5] Testing Conditional Independence of Discrete Distributions
    Canonne, Clement L.
    Diakonikolas, Ilias
    Kane, Daniel M.
    Stewart, Alistair
    [J]. STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 735 - 748
  • [6] On testing marginal versus conditional independence
    Guo, F. Richard
    Richardson, Thomas S.
    [J]. BIOMETRIKA, 2020, 107 (04) : 771 - 790
  • [7] Testing for conditional multiple marginal independence
    Bilder, CR
    Loughin, TM
    [J]. BIOMETRICS, 2002, 58 (01) : 200 - 208
  • [8] Normalizing flows for conditional independence testing
    Bao Duong
    Thin Nguyen
    [J]. Knowledge and Information Systems, 2024, 66 (1) : 357 - 380
  • [9] NONPARAMETRIC CONDITIONAL LOCAL INDEPENDENCE TESTING
    Christgau, Alexander Mangulad
    Petersen, Lasse
    Hansen, Niels richard
    [J]. ANNALS OF STATISTICS, 2023, 51 (05): : 2116 - 2144
  • [10] MINIMAX OPTIMAL CONDITIONAL INDEPENDENCE TESTING
    Neykov, Matey
    Balakrishnan, Sivaraman
    Wasserman, Larry
    [J]. ANNALS OF STATISTICS, 2021, 49 (04): : 2151 - 2177