Mechanochemical Phosphorylation and Solubilisation of β-D-Glucan from Yeast Saccharomyces cerevisiae and Its Biological Activities

被引:25
|
作者
Shi, Feng [1 ,2 ,3 ]
Shi, Jikui [1 ,2 ,3 ]
Li, Yongfu [4 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi, Peoples R China
[2] Jiangnan Univ, Sch Biotechnol, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi, Peoples R China
[3] Jiangnan Univ, Synerget Innovat Ctr Food Safety & Nutr, Wuxi, Peoples R China
[4] Jiangnan Univ, Natl Engn Lab Cereal Fermentat Technol, Wuxi, Peoples R China
来源
PLOS ONE | 2014年 / 9卷 / 07期
关键词
MECHANICAL ACTIVATION; ANTITUMOR ACTIVITIES; PHYSICOCHEMICAL CHARACTERIZATION; CHAIN CONFORMATION; RESPONSE MODIFIER; ANTIOXIDANT; CELLULOSE; POLYSACCHARIDES; DERIVATIVES; PRODUCTS;
D O I
10.1371/journal.pone.0103494
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To obtain a water-soluble beta-D-glucan derivative cleanly and conveniently, a highly efficient mechanochemical method, planetary ball milling, was used to phosphorylate beta-D-glucan isolated from yeast Saccharomyces cerevisiae in solid state. Soluble beta-D-glucan phosphate (GP) with a high degree of substitution (0.77-2.09) and an apparent PEAK molecular weight of 6.6-10.0 kDa was produced when beta-D-glucan was co-milled with sodium hexametaphosphate at 139.5-186.0 rad/s for 12-20 min. The energy transferred was 3.03-11.98 KJ/g. The phosphorylation of GPs was demonstrated by Fourier transform infrared spectroscopy and C-13 and P-31 Nuclear magnetic resonance spectroscopy. Three GP products with different degree of substitution (DS) and degree of polymerisation (DP) were able to upregulate the functional events mediated by activated murine macrophage RAW264.7 cells, among which GP-2 with a DS of 1.24 and DP of 30.5 exerted the highest immunostimulating activity. Our results indicate that mechanochemical processing is an efficient method for preparing water-soluble and biologically active GP with high DS.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Optimised methodology for carboxymethylation of (1→3)-β-D-glucan from Yeast (Saccharomyces cerevisiae) and promotion of mechanical activation
    Ding, Junzhou
    Wang, Yufang
    Xiong, Shanbai
    Zhao, Siming
    Huang, Qilin
    [J]. INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2013, 48 (02): : 253 - 259
  • [2] Mild Pfitzner—Moffat oxidation of the (1→3)-β-D-glucan from Saccharomyces cerevisiae
    D. Zeković
    M. Radulović
    A. Nastasović
    M. M. Vrvić
    D. Jakovljević
    G. Kogan
    [J]. Chemical Papers, 2006, 60 : 243 - 248
  • [3] An in vitro assay for (1→6)-β-D-glucan synthesis in Saccharomyces cerevisiae
    Vink, E
    Rodriguez-Suarez, RJ
    Gérard-Vincent, M
    Ribas, JC
    de Nobel, H
    van den Ende, H
    Durán, A
    Klis, FM
    Bussey, H
    [J]. YEAST, 2004, 21 (13) : 1121 - 1131
  • [4] Mild Pfitzner-Moffat oxidation of the (1→3)-β-D-glucan from Saccharomyces cerevisiae
    Zekovic, D.
    Radulovic, M.
    Nastasovic, A.
    Vrvic, M. M.
    Jakovljevic, D.
    Kogan, G.
    [J]. CHEMICAL PAPERS-CHEMICKE ZVESTI, 2006, 60 (03): : 243 - 248
  • [5] The solubilization and biological activities of Aspergillus β-(1→3)-D-glucan
    Ishibashi, K
    Miura, NN
    Adachi, Y
    Tamura, H
    Tanaka, S
    Ohno, N
    [J]. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY, 2004, 42 (02): : 155 - 166
  • [6] Immunostimulatory activities of β-D-glucan from Ganoderma Lucidum
    Wang, Jianguo
    Yuan, Yahong
    Yue, Tianli
    [J]. CARBOHYDRATE POLYMERS, 2014, 102 : 47 - 54
  • [7] Immunomodulatory activities associated with β-glucan derived from Saccharomyces cerevisiae
    Pelizon, AC
    Kaneno, R
    Soares, AMVC
    Meira, DA
    Sartori, A
    [J]. PHYSIOLOGICAL RESEARCH, 2005, 54 (05) : 557 - 564
  • [8] Antioxidative activity of (1→3), (1→6)-β-D-glucan from Saccharomyces cerevisiae grown on different media
    Jaehrig, Silke C.
    Rohn, Sascha
    Kroh, Lother W.
    Wildenauer, Franz X.
    Lisdat, Fred
    Fleischer, Lutz-Guenther
    Kurz, Tomas
    [J]. LWT-FOOD SCIENCE AND TECHNOLOGY, 2008, 41 (05) : 868 - 877
  • [9] A new non-degrading isolation process for 1,3-β-D-glucan of high purity from baker's yeast Saccharomyces cerevisiae
    Freimund, S
    Sauter, M
    Käppeli, O
    Dutler, H
    [J]. CARBOHYDRATE POLYMERS, 2003, 54 (02) : 159 - 171
  • [10] Polymer analytical characterization of glucan and mannan from yeast Saccharomyces cerevisiae
    Kath, F
    Kulicke, WM
    [J]. ANGEWANDTE MAKROMOLEKULARE CHEMIE, 1999, 268 : 69 - 80