A Pipeline for Hand 2-D Keypoint Localization Using Unpaired Image to Image Translation

被引:8
|
作者
Farahanipad, Farnaz [1 ]
Rezaei, Mohammad [1 ]
Dillhoff, Alex [1 ]
Kamangar, Farhad [1 ]
Athitsos, Vassilis [1 ]
机构
[1] Univ Texas Arlington, Arlington, TX 76019 USA
关键词
2-D hand pose estimation; fingertip detection and localization; generative adversarial networks; human-computer interaction; domain transfer;
D O I
10.1145/3453892.3453904
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Hand pose estimation is getting a lot of attention in many areas such as Human-Computer Interaction and Sign Language Recognition. A fundamental step to accurately estimate the hand pose involves detecting and localizing fingertips in an image. Despite the progress of 2-D hand pose estimation in recent studies, accurate and robust detection and localization of fingertips still remains a challenging task due to low resolution of a fingertip in images and varying lightning condition. Inspired by the progress of the Generative Adversarial Network (GAN) and image-style transfer, we propose a two-stage pipeline to accurately localize the fingertip position even in varying lighting and severe self occlusion on depth images. The idea is to use a Cycle-consistent Generative Adversarial Network (Cycle-GAN) to apply unpaired image-to-image translation and generate a depth image with colored predictions on the fingertips, wrist, and palm given a real depth image. The model is trained in a semi-supervised manner using a collection of images from source and target domains that do not need to be related in anyway. Then, by applying color segmentation techniques, we localize the center of each colored area which results in finding the location of each fingertip along with center of the wrist and the palm. The proposed method achieves visually promising results on noisy depth images captured using the Microsoft Kinect. Experiments on the challengingNYU hand dataset have demonstrated that our approach not only generates plausible samples, but also outperforms state-of-the-art approaches on 2-D fingertip estimation by a significant margin even in the presence of severe self-occlusion and varying lighting conditions. Moreover, fingertips would be detected irrespective of user orientation using this method.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 50 条
  • [1] 2-D Image Localization in Hyperspectral Image Analysis of Pharmaceutical Materials
    Shi, Zhenqi
    Anderson, Carl A.
    JOURNAL OF PHARMACEUTICAL INNOVATION, 2011, 6 (01) : 2 - 9
  • [2] 2-D Image Localization in Hyperspectral Image Analysis of Pharmaceutical Materials
    Zhenqi Shi
    Carl A. Anderson
    Journal of Pharmaceutical Innovation, 2011, 6 : 2 - 9
  • [3] DehazeGAN: Underwater Haze Image Restoration using Unpaired Image-to-image Translation
    Cho, Younggun
    Malav, Ramavtar
    Pandey, Gaurav
    Kim, Ayoung
    IFAC PAPERSONLINE, 2019, 52 (21): : 82 - 85
  • [4] Random Reconstructed Unpaired Image-to-Image Translation
    Zhang, Xiaoqin
    Fan, Chenxiang
    Xiao, Zhiheng
    Zhao, Li
    Chen, Huiling
    Chang, Xiaojun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3144 - 3154
  • [5] Unpaired image-to-image translation of structural damage
    Varghese, Subin
    Hoskere, Vedhus
    ADVANCED ENGINEERING INFORMATICS, 2023, 56
  • [6] Avoiding Shortcuts in Unpaired Image-to-Image Translation
    Fontanini, Tomaso
    Botti, Filippo
    Bertozzi, Massimo
    Prati, Andrea
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 463 - 475
  • [7] Asymmetric GAN for Unpaired Image-to-Image Translation
    Li, Yu
    Tang, Sheng
    Zhang, Rui
    Zhang, Yongdong
    Li, Jintao
    Yan, Shuicheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (12) : 5881 - 5896
  • [8] Learning Image-to-Image Translation Using Paired and Unpaired Training Samples
    Tripathy, Soumya
    Kannala, Juho
    Rahtu, Esa
    COMPUTER VISION - ACCV 2018, PT II, 2019, 11362 : 51 - 66
  • [9] Unpaired Image-to-Image Translation Using Negative Learning for Noisy Patches
    Hung, Yu-Hsiang
    Tan, Julianne
    Huang, Tai-Ming
    Hsu, Shang-Che
    Chen, Yi-Ling
    Hua, Kai-Lung
    IEEE MULTIMEDIA, 2022, 29 (04) : 59 - 68
  • [10] Underwater Image Dehazing via Unpaired Image-to-image Translation
    Cho, Younggun
    Jang, Hyesu
    Malav, Ramavtar
    Pandey, Gaurav
    Kim, Ayoung
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (03) : 605 - 614