Statistical inference of the generalized Pareto distribution based on upper record values

被引:0
|
作者
Zhao, Xu [1 ]
Geng, Xueyan [1 ]
Cheng, Weihu [1 ]
Zhang, Pengyue [2 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
基金
中国国家自然科学基金;
关键词
Generalized Pareto distribution; Extreme values; Upper record values; Parameter estimation; Threshold selection; OF-FIT TESTS; SELECTION;
D O I
10.4310/SII.2019.v12.n4.a1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Upper records are important statistics in environmental science and many other fields. Because upper records are crucial for policy making, precise modeling and inference techniques are in high demand. The generalized Pareto distribution (GPD) is commonly adopted by researchers for modeling heavy tail phenomena in many applications. The statistical inference of the GPD upper records is a critical issue in record analysis. Based on upper record data, the current parameter estimation methods of the GPD depend on preassumed shape parameter and only estimate the location and scale parameters. However, the shape parameter is typically unknown in real applications. In this manuscript, we propose a new approach that can estimate all three parameters of the GPD. The proposed estimator is used in conjunction with a moment method and nonlinear weighted least squares theory that minimizes the sum of squared deviations between the upper records and their expectations. In simulation studies, we compare alternative estimators and demonstrate that the new estimator is competitive in terms of the bias and means square error in estimating the shape and scale parameters. In addition, we investigate the performance of different threshold selection procedures by estimating the Value-at-Risk (VaR) of the GPD. Finally, we illustrate the utilization of the proposed methods by analyzing an air pollution data. In this analysis, we provide a detailed guide for selecting the threshold and upper records.
引用
收藏
页码:501 / 510
页数:10
相关论文
共 50 条
  • [1] Upper record values from the generalized Pareto distribution and associated statistical inference
    Zhao, Xu
    Wei, Shaojie
    Cheng, Weihu
    Zhang, Pengyue
    Zhang, Yang
    Xu, Qi
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (02) : 369 - 391
  • [2] Statistical inference for the generalized inverted exponential distribution based on upper record values
    Dey, Sanku
    Dey, Tanujit
    Luckett, Daniel J.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 120 : 64 - 78
  • [3] Statistical inference of reliability in multicomponent stress strength model for pareto distribution based on upper record values
    Azhad, Qazi J.
    Arshad, Mohd.
    Khandelwal, Nancy
    [J]. INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2022, 42 (02): : 319 - 334
  • [4] Statistical Inference for the Chen Distribution Based on Upper Record Values
    Yousaf F.
    Ali S.
    Shah I.
    [J]. Annals of Data Science, 2019, 6 (04) : 831 - 851
  • [5] Record values from generalized Pareto distribution and associated inference
    Sultan, KS
    Moshref, ME
    [J]. METRIKA, 2000, 51 (02) : 105 - 116
  • [6] Record values from generalized Pareto distribution and associated inference
    Khalaf S. Sultan
    Mohamed E. Moshref
    [J]. Metrika, 2000, 51 : 105 - 116
  • [7] Confidence Intervals of the Generalized Pareto Distribution Parameters Based on Upper Record Values
    Xu Zhao
    Wei-hu Cheng
    Yang Zhang
    Shao-jie Wei
    Zhen-hai Yang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 909 - 918
  • [8] Confidence Intervals of the Generalized Pareto Distribution Parameters Based on Upper Record Values
    Zhao, Xu
    Cheng, Wei-hu
    Zhang, Yang
    Wei, Shao-jie
    Yang, Zhen-hai
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (04): : 909 - 918
  • [9] Confidence Intervals of the Generalized Pareto Distribution Parameters Based on Upper Record Values
    Xu ZHAO
    Wei-hu CHENG
    Yang ZHANG
    Shao-jie WEI
    Zhen-hai YANG
    [J]. Acta Mathematicae Applicatae Sinica, 2019, 35 (04) : 909 - 918
  • [10] Statistical inference based on generalized Lindley record values
    Singh, Sukhdev
    Dey, Sanku
    Kumar, Devendra
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (09) : 1543 - 1561