An Offline and Online Algorithm for All Minimal k|U| Parameter Subsets of a Soft Set Based on Integer Partition

被引:1
|
作者
Geng, Shengling [1 ,4 ]
Han, Banghe [2 ]
Wu, Ruize [3 ]
Xu, Runqing [1 ]
机构
[1] Qinghai Normal Univ, Sch Comp, Xining 810000, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710000, Peoples R China
[3] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710000, Peoples R China
[4] Acad Plateau Sci & Sustainabil, Xining 810016, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
基金
美国国家科学基金会;
关键词
k vertical bar U vertical bar parameter subsets; minimal k vertical bar U vertical bar parameter subsets; soft set; integer partition; normal parameter reduction; REDUCTION ALGORITHM; DECISION;
D O I
10.1109/ACCESS.2020.3032578
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article investigates k vertical bar U vertical bar parameter subsets of a soft set matrix whose column sums are integral multiples of vertical bar U vertical bar (i.e., the number of objects in the soft set domain U). This kind of parameter subset represents an important data structure. Particularly, as a necessary condition, it has been shown to be useful in the parameter reduction problems of soft sets. This article focuses on the minimal k vertical bar U vertical bar parameter subsets, whose any proper subset cannot be a k vertical bar U vertical bar parameter subset. An offline and online algorithm for minimal k|U| parameter subsets is proposed. Its basic function is based on integer partition in an offline way. When soft set data come online, the algorithm only needs to filter the factorization results according to the related constraints within the input soft set. We also bring in combinatorial formulas for computing the number of k vertical bar U vertical bar parameter subsets and the approximate number of minimal k vertical bar U vertical bar parameter subsets. As an application of k vertical bar U vertical bar parameter subsets, the method of integer partition is also extended for normal parameter reduction problems of soft sets. The experimental results show that the proposed method does result in better performance.
引用
收藏
页码:192393 / 192407
页数:15
相关论文
共 20 条
  • [1] A novel algorithm for all normal parameter reductions of a soft set based on object weighting and integer partition
    Banghe Han
    Ruize Wu
    Shengling Geng
    Xinyu Nie
    [J]. Applied Intelligence, 2022, 52 : 11873 - 11891
  • [2] A novel algorithm for all normal parameter reductions of a soft set based on object weighting and integer partition
    Han, Banghe
    Wu, Ruize
    Geng, Shengling
    Nie, Xinyu
    [J]. APPLIED INTELLIGENCE, 2022, 52 (10) : 11873 - 11891
  • [3] MINIMAL INTEGER WEIGHTING OF N SUCH THAT FOR ANY K ALL THE K-SUBSETS OF N HAVE UNEQUAL WEIGHTS
    KREWERAS, G
    RODRIGUEZ, MAA
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (08): : 345 - 347
  • [4] AN ALGORITHM FOR DETERMINING THE MINIMAL CONVEX SUBSET THAT CONTAINS ALL THE INTEGER POINTS OF A CONVEX POLYHEDRAL SET
    HUGHES, JB
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (09) : 111 - 118
  • [5] U-AEFA: Online and offline learning-based unified artificial electric field algorithm for real parameter optimization
    Chauhan, Dikshit
    Trivedi, Anupam
    Yadav, Anupam
    [J]. Knowledge-Based Systems, 2024, 305
  • [6] Parameter Reduction in Fuzzy Soft Set Based on Whale Optimization Algorithm
    Kong, Zhi
    Zhao, Jie
    Yang, Qingfeng
    Ai, Jianwei
    Wang, Lifu
    [J]. IEEE ACCESS, 2020, 8 : 217268 - 217281
  • [7] Parameter Reduction in Fuzzy Soft Set Based on Whale Optimization Algorithm
    Kong, Zhi
    Zhao, Jie
    Yang, Qingfeng
    Ai, Jianwei
    Wang, Lifu
    [J]. IEEE Access, 2020, 8 : 217268 - 217281
  • [8] Normal parameter reduction in soft set based on particle swarm optimization algorithm
    Kong, Zhi
    Jia, Wenhua
    Zhang, Guodong
    Wang, Lifu
    [J]. APPLIED MATHEMATICAL MODELLING, 2015, 39 (16) : 4808 - 4820
  • [9] Minimal K-covering set algorithm based on particle swarm optimizer
    Hu, Yong
    [J]. Journal of Networks, 2013, 8 (12) : 2872 - 2877
  • [10] Approximate normal parameter reduction of fuzzy soft set based on harmony search algorithm
    Kong, Zhi
    Jia, Wenhua
    Wang, Lifu
    [J]. PROCEEDINGS 2015 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING BDCLOUD 2015, 2015, : 321 - 324