Image navigation and registration for the geostationary lightning mapper (GLM)

被引:4
|
作者
van Bezooijen, Roel W. H. [1 ]
Demroff, Howard [1 ]
Burton, Gregory [2 ]
Chu, Donald [3 ]
Yang, Shu S. [4 ]
机构
[1] LMATC, Palo Alto, CA 94304 USA
[2] LMATC, San Francisco, CA 94103 USA
[3] Chesapeake Aerosp LLC, Grasonville, MD 21638 USA
[4] Carr Astronaut Corp, Greenbelt, MD 20770 USA
关键词
image navigation and registration (INR); geolocation; coastline ID; remote sensing; lightning detection; GOES;
D O I
10.1117/12.2242141
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite ( GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Validation of image navigation and registration for the Geostationary Lightning Mapper
    Carr, James L.
    Tillier, Clemens E.
    Yang, Shu
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (03)
  • [2] The GOES-R Geostationary Lightning Mapper (GLM)
    Goodman, Steven J.
    Blakeslee, Richard J.
    Koshak, William J.
    Mach, Douglas
    Bailey, Jeffrey
    Buechler, Dennis
    Carey, Larry
    Schultz, Chris
    Bateman, Monte
    McCaul, Eugene, Jr.
    Stano, Geoffrey
    ATMOSPHERIC RESEARCH, 2013, 125 : 34 - 49
  • [3] Image navigation and registration performance assessment tool set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper
    De Luccia, Frank J.
    Houchin, Scott
    Porter, Brian C.
    Graybill, Justin
    Haas, Evan
    Johnson, Patrick D.
    Isaacson, Peter J.
    Reth, Alan D.
    EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION IV, 2016, 9881
  • [4] Automated and Objective Thunderstorm Identification and Tracking Using Geostationary Lightning Mapper (GLM) Data
    Murphy, Kelley M.
    Carey, Lawrence D.
    Schultz, Hristopher J.
    Curtis, Nathan
    Calhoun, Kristin M.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2024, 63 (01) : 47 - 64
  • [5] Airborne radiometric validation of the geostationary lightning mapper using the Fly's Eye GLM Simulator
    Quick, Mason G.
    Christian, Hugh J.
    Virts, Katrina S.
    Blakeslee, Richard J.
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)
  • [6] Rapid Scan Visible Imagery from the Geostationary Lightning Mapper (GLM) at 2.5-Minute Intervals
    Cecil, Daniel J.
    Buechler, Dennis E.
    Mecikalski, John R.
    Li, Xuanli
    MONTHLY WEATHER REVIEW, 2020, 148 (12) : 5105 - 5112
  • [7] Meteorological Imagery for the Geostationary Lightning Mapper
    Bruning, Eric C.
    Tillier, Clemens E.
    Edgington, Samantha F.
    Rudlosky, Scott D.
    Zajic, Joe
    Gravelle, Chad
    Foster, Matt
    Calhoun, Kristin M.
    Campbell, P. Adrian
    Stano, Geoffrey T.
    Schultz, Christopher J.
    Meyer, Tiffany C.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (24) : 14285 - 14309
  • [8] Dual Geostationary Lightning Mapper Observations
    Rudlosky, Scott D.
    Virts, Katrina S.
    MONTHLY WEATHER REVIEW, 2021, 149 (04) : 979 - 998
  • [9] Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data
    Schultz, Elise V.
    Schultz, Christopher J.
    Carey, Lawrence D.
    Cecil, Daniel J.
    Bateman, Monte
    JOURNAL OF OPERATIONAL METEOROLOGY, 2016, 4 (07) : 92 - 107
  • [10] Initial Geostationary Lightning Mapper Observations
    Rudlosky, Scott D.
    Goodman, Steven J.
    Virts, Katrina S.
    Bruning, Eric C.
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (02) : 1097 - 1104