Filling length in finitely presentable groups

被引:15
|
作者
Gersten, SM
Riley, TR
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Math Inst, Oxford OX1 3LB, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
filling length; finitely presented group; isoperimetric function;
D O I
10.1023/A:1019682203828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the filling length function for a finite presentation of a group Gamma, and interpret this function as an optimal bound on the length of the boundary loop as a vanKampen diagram is collapsed to the basepoint using a combinatorial notion of a null-homotopy. We prove that filling length is well behaved under change of presentation of Gamma. We look at 'AD-pairs' (f,g) for a finite presentation cal P: that is, an isoperimetric function f and an isodiametric function g that can be realised simultaneously. We prove that the filling length admits a bound of the form [g+1][log (f+1)+1] whenever (f,g) is an AD-pair for cal P. Further we show that (up to multiplicative constants) if x(r) is an isoperimetric function (r greater than or equal to 2) for a finite presentation then (x(r),x(r-1)) is an AD-pair. Also we prove that for all finite presentations filling length is bounded by an exponential of an isodiametric function.
引用
收藏
页码:41 / 58
页数:18
相关论文
共 50 条
  • [1] Filling Length in Finitely Presentable Groups
    Steve M. Gersten
    Tim. R. Riley
    Geometriae Dedicata, 2002, 92 : 41 - 58
  • [2] A twisted invariant for finitely presentable groups
    Morifuji, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (09) : 143 - 145
  • [3] On the difficulty of presenting finitely presentable groups
    Bridson, Martin R.
    Wilton, Henry
    GROUPS GEOMETRY AND DYNAMICS, 2011, 5 (02) : 301 - 325
  • [4] Perfect and acyclic subgroups of finitely presentable groups
    Berrick, AJ
    Hillman, JA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 : 683 - 698
  • [5] TWISTED ALEXANDER POLYNOMIAL FOR FINITELY PRESENTABLE GROUPS
    WADA, M
    TOPOLOGY, 1994, 33 (02) : 241 - 256
  • [6] Filling radii of finitely presented groups
    Gersten, SM
    Riley, TR
    QUARTERLY JOURNAL OF MATHEMATICS, 2002, 53 : 31 - 45
  • [7] FINITELY PRESENTABLE MORPHISMS IN EXACT SEQUENCES
    Hebert, Michel
    THEORY AND APPLICATIONS OF CATEGORIES, 2010, 24 : 209 - 220
  • [8] FINITELY PRESENTABLE ALGEBRAS FOR FINITARY MONADS
    Adamek, J.
    Milius, S.
    Sousa, L.
    Wissmann, T.
    THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 1179 - 1195
  • [9] FREE INVERSE SEMIGROUPS ARE NOT FINITELY PRESENTABLE
    SCHEIN, BM
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1975, 26 (1-2): : 41 - 52
  • [10] Algebraic lattices and locally finitely presentable categories
    Porst, Hans-E.
    ALGEBRA UNIVERSALIS, 2011, 65 (03) : 285 - 298