Fundamentals to Clustering 3D Point Cloud Data

被引:0
|
作者
Poux, Florent [1 ]
机构
[1] Univ Liege, 3D Geodata, Liege, Belgium
关键词
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Automation in point cloud data processing is central for building efficient decision-making systems and to cut labour costs. The identification of objects of interest in these massive datasets constitutes the base of many applications. While new supervised deep learning architectures show promising results, the amount of available labelled 3D data is often insufficient for a good generalization. This is where unsupervised approaches and data clustering shine.
引用
收藏
页码:19 / 21
页数:3
相关论文
共 50 条
  • [1] Representing 3D Point Cloud Data
    Poux, Florent
    [J]. GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2022, 36 (04): : 36 - +
  • [2] Fast Multi-Resolution Spatial Clustering for 3D Point Cloud Data
    Chiang, Yen-Hung
    Hsu, Chih-Ming
    Tsai, Augustine
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1678 - 1683
  • [3] The Research of 3D Point Cloud Data Clustering Based on MEMS Lidar for Autonomous Driving
    Yang, Weikang
    Dong, Siwei
    Li, Dagang
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (05) : 1251 - 1262
  • [4] Research on 3D Point Cloud Data Preprocessing and Clustering Algorithm of Obstacles for Intelligent Vehicle
    Wang, Pengwei
    Gu, Tianqi
    Sun, Binbin
    Huang, Di
    Sun, Ke
    [J]. WORLD ELECTRIC VEHICLE JOURNAL, 2022, 13 (07):
  • [5] A Simplification Algorithm for 3D Point Cloud Data
    Wang, Lihui
    Chen, Jing
    Yuan, Baozong
    [J]. 2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 1271 - 1274
  • [6] Preprocessing and Transmission for 3D Point Cloud Data
    Wang, Zunran
    Yang, Chenguang
    Ju, Zhaojie
    Li, Zhijun
    Su, Chun-Yi
    [J]. INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2017, PT I, 2017, 10462 : 438 - 449
  • [7] Learning from 3D (Point Cloud) Data
    Hsu, Winston H.
    [J]. PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2697 - 2698
  • [8] Clustering based Point Cloud Representation Learning for 3D Analysis
    Feng, Tuo
    Wang, Wenguan
    Wang, Xiaohan
    Yang, Yi
    Zheng, Qinghua
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 8249 - 8260
  • [9] A 3D organized point cloud clustering algorithm for seismic fault data based on region growth
    Lihong Zhao
    Minghao Cai
    Renwei Ding
    Yujie Zhang
    Shuo Zhao
    Jinwei Zhang
    Jing Yang
    [J]. Computational Geosciences, 2023, 27 : 1165 - 1181
  • [10] Unsupervised Clustering of Multi-Perspective 3D Point Cloud Data in Marshes: A Case Study
    Chuyen Nguyen
    Starek, Michael J.
    Tissot, Philippe
    Gibeaut, James
    [J]. REMOTE SENSING, 2019, 11 (22)