Robust multiple confidence intervals for contrasts

被引:0
|
作者
Bachmaier, M [1 ]
Precht, M [1 ]
机构
[1] TECH UNIV MUNICH,DATENVERARBEITUNGSSTELLE WEIHENSTEPHAN,D-85350 FREISING,GERMANY
关键词
M-estimate; robust; Tukey; multiple confidence intervals; heterogeneous scale parameters;
D O I
10.1016/S0167-9473(96)00087-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper shows that multiple confidence intervals for all pairwise differences of the effects according to Tukey can be calculated with robust M-estimators just as in the classical case using the quantiles of the studentized range distribution. It will be shown in the two-way analysis of variance without interaction that such multiple confidence intervals are asymptotically correct if the error distribution is symmetrical. For the interaction model we make a simple proposal how multiple confidence intervals for the difference of only the interesting cell effects (diagonal cell comparison is not interesting) of one factor can be built. Refering to Monte-Carlo results we compare average length and probability for the a-error of the robust confidence intervals with the classical ones for t-distributed and lognormal errors and show the great liberty of the robust confidence intervals in the presence of heterogeneous scale parameters. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:25 / 42
页数:18
相关论文
共 50 条
  • [1] Approximate Simultaneous Confidence Intervals for Multiple Contrasts of Binomial Proportions
    Schaarschmidt, Frank
    Sill, Martin
    Hothorn, Ludwig A.
    [J]. BIOMETRICAL JOURNAL, 2008, 50 (05) : 782 - 792
  • [2] ROBUST CONFIDENCE-INTERVALS FOR CONTRASTS BASED UPON A LIKELIHOOD RATIO TEST
    BACHMAIER, M
    PRECHT, M
    [J]. STATISTICAL PAPERS, 1995, 36 (03) : 215 - 236
  • [3] Simultaneous confidence intervals for contrasts of quantiles
    Segbehoe, Lawrence S.
    Schaarschmidt, Frank
    Djira, Gemechis D.
    [J]. BIOMETRICAL JOURNAL, 2022, 64 (01) : 7 - 19
  • [4] Confidence intervals for standardized linear contrasts of means
    Bonett, Douglas G.
    [J]. PSYCHOLOGICAL METHODS, 2008, 13 (02) : 99 - 109
  • [5] Estimating Simultaneous Confidence Intervals for Multiple Contrasts of Proportions by the Method of Variance Estimates Recovery
    Donner, Allan
    Zou, Guang Yong
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2011, 3 (02): : 320 - 335
  • [6] Robust misinterpretation of confidence intervals
    Rink Hoekstra
    Richard D. Morey
    Jeffrey N. Rouder
    Eric-Jan Wagenmakers
    [J]. Psychonomic Bulletin & Review, 2014, 21 : 1157 - 1164
  • [7] Robust misinterpretation of confidence intervals
    Hoekstra, Rink
    Morey, Richard D.
    Rouder, Jeffrey N.
    Wagenmakers, Eric-Jan
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2014, 21 (05) : 1157 - 1164
  • [8] Robust generalized confidence intervals
    Mu, Weiyan
    Xiong, Shifeng
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) : 6049 - 6060
  • [9] Dimension reduction for simultaneous confidence intervals of linear contrasts
    Cheng, C
    [J]. DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 302 - 302
  • [10] FIXED-WIDTH CONFIDENCE-INTERVALS FOR CONTRASTS IN THE MEANS
    CHATURVEDI, A
    SHUKLA, ND
    SHUKLA, PS
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1992, 44 (01) : 157 - 167