On Odd-periodic Orbits in Complex Planar Billiards

被引:5
|
作者
Glutsyuk, Alexey [1 ,2 ,3 ,4 ]
机构
[1] CNRS, F-75700 Paris, France
[2] ENS Lyon, UMPA, UMR 5669, Lyon, France
[3] Lab JV Poncelet, UMI 2615, Lyon, France
[4] Natl Res Univ Higher Sch Econ HSE, Moscow, Russia
关键词
Real (complex) planar analytic billiard; Periodic orbit; Complex Euclidean metric; Isotropic lines; Complex reflections; Real planar analytic pseudo-billiard; Invisibility; POINTS; BODIES; SET;
D O I
10.1007/s10883-014-9236-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The famous conjecture of V. Ya. Ivrii (1978) says that in every billiard with infinitely-smooth boundary in a Euclidean space the set of periodic orbits has measure zero. In the present paper, we study the complex version of Ivrii's conjecture for odd-periodic orbits in planar billiards, with reflections from complex analytic curves. We prove positive answer in the following cases: (1) triangular orbits; (2) odd-periodic orbits in the case, when the mirrors are algebraic curves avoiding two special points at infinity, the so-called isotropic points. We provide immediate applications to k-reflective real analytic pseudo-billiards with odd k, the real piecewise-algebraic Ivrii's conjecture and its analogue in the invisibility theory: Plakhov's invisibility conjecture.
引用
收藏
页码:293 / 306
页数:14
相关论文
共 50 条
  • [1] On Odd-periodic Orbits in Complex Planar Billiards
    Alexey Glutsyuk
    Journal of Dynamical and Control Systems, 2014, 20 : 293 - 306
  • [2] ON QUADRILATERAL ORBITS IN COMPLEX ALGEBRAIC PLANAR BILLIARDS
    Glutsyuk, Alexey
    MOSCOW MATHEMATICAL JOURNAL, 2014, 14 (02) : 239 - 289
  • [3] Odd-periodic Grover Walks
    Yoshie, Yusuke
    QUANTUM INFORMATION PROCESSING, 2023, 22 (08)
  • [4] Odd-periodic complementary set
    Wen, H
    Hu, F
    Jin, F
    6TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS: BROADBAND CONVERGENCE NETWORK INFRASTRUCTURE, 2004, : 683 - 684
  • [5] Odd-periodic Grover Walks
    Yusuke Yoshie
    Quantum Information Processing, 22
  • [6] ODD-PERIODIC AND PERIODIC COMPLEMENTARY BINARY SEQUENCES
    Wen Hong Hu Fei Jin Fan(School of Computer and Commun. Eng.
    Journal of Electronics(China), 2005, (01) : 42 - 46
  • [7] ODD-PERIODIC AND PERIODIC COMPLEMENTARY BINARY SEQUENCES
    Wen Hong Hu Fei Jin FanSchool of Computer and Commun Eng Southwest Jiaotong Univ Chengdu China
    Journal of Electronics, 2005, (01) : 42 - 46
  • [8] Binary odd-periodic complementary sequences
    Luke, HD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (01) : 365 - 367
  • [9] On quadrilateral orbits in planar billiards
    A. A. Glutsyuk
    Yu. G. Kudryashov
    Doklady Mathematics, 2011, 83 : 371 - 373
  • [10] On Quadrilateral Orbits in Planar Billiards
    Glutsyuk, A. A.
    Kudryashov, Yu G.
    DOKLADY MATHEMATICS, 2011, 83 (03) : 371 - 373