MEIR-KEELER OPERATORS AND APPLICATIONS TO SURJECTIVITY THEOREMS

被引:0
|
作者
Moga, Madalina [1 ]
机构
[1] Babes Bolyai Univ Cluj Napoca, Fac Math & Comp Sci, Kogalniceanu St 1, Cluj Napoca, Romania
关键词
Banach space; fixed point; Meir-Keeler operator; quasi-bounded operator; norm-contraction; surjectivity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first purpose of this paper is to prove that, in a Banach space X, a Meir-Keeler operator f (singlevalued or multivalued) is a norm-contraction. Then, using this result, we will give sufficient conditions assuring that the field 1(x)-f, generated by f, is surjective. In the first section of the paper, we will recall some basic notions and results. Then, the second and the third sections contain surjectivity theorems for singlevalued and, respectively, multivalued Meir-Keeler operators. In the last chapter we present an application for the previous results. Our results generalize some well-known theorems of this type for Banach/Nadler type contractions.
引用
收藏
页码:625 / 634
页数:10
相关论文
共 50 条
  • [1] Meir-Keeler Condensing Operators and Applications
    Amor, Sana Hadj
    Traiki, Abdelhak
    [J]. FILOMAT, 2021, 35 (07) : 2175 - 2188
  • [2] Some fixed point theorems for Meir-Keeler condensing operators with applications to integral equations
    Alotaibi, A.
    Mursaleen, M.
    Mohiuddine, S. A.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (04) : 529 - 541
  • [3] Altering distances, some generalizations of Meir-Keeler theorems and applications
    Patriciu, Alina-Mihaela
    Popa, Valeriu
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (02): : 207 - 222
  • [4] FIXED POINT THEOREMS FOR MEIR-KEELER CONDENSING OPERATORS VIA MEASURE OF NONCOMPACTNESS
    Aghajani, A.
    Mursaleen, M.
    Haghighi, A. Shole
    [J]. ACTA MATHEMATICA SCIENTIA, 2015, 35 (03) : 552 - 566
  • [5] EQUIVALENT CONDITIONS AND THE MEIR-KEELER TYPE THEOREMS
    JACHYMSKI, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 194 (01) : 293 - 303
  • [6] Meir-Keeler theorems in fuzzy metric spaces
    Zheng, Dingwei
    Wang, Pei
    [J]. FUZZY SETS AND SYSTEMS, 2019, 370 : 120 - 128
  • [7] Fixed point theorems for α-contractive mappings of Meir-Keeler type and applications
    Berzig, Maher
    Rus, Mircea-Dan
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2014, 19 (02): : 178 - 198
  • [8] FIXED POINT THEOREMS FOR MEIR-KEELER CONDENSING OPERATORS VIA MEASURE OF NONCOMPACTNESS
    A.AGHAJANI
    M.MURSALEEN
    A.SHOLE HAGHIGHI
    [J]. Acta Mathematica Scientia, 2015, 35 (03) : 552 - 566
  • [9] A NOTE ON MULTIVALUED MEIR-KEELER TYPE OPERATORS
    Petrusel, Adrian
    Petrusel, Gabriela
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2006, 51 (04): : 174 - 181
  • [10] FIXED POINT THEOREMS FOR MEIR-KEELER CONDENSING OPERATORS IN PARTIALLY ORDERED BANACH SPACES
    Wairojjana, Nopparat
    Rehman, Habib Ur
    Abdullahi, Muhammad Sirajo
    Pakkaranang, Nuttapol
    [J]. THAI JOURNAL OF MATHEMATICS, 2020, 18 (01): : 77 - 93