The Global Kernel k-Means Algorithm for Clustering in Feature Space

被引:110
|
作者
Tzortzis, Grigorios F. [1 ]
Likas, Aristidis C. [1 ]
机构
[1] Univ Ioannina, Dept Comp Sci, GR-45110 Ioannina, Greece
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2009年 / 20卷 / 07期
关键词
Clustering; graph partitioning; k-means; kernel k-means;
D O I
10.1109/TNN.2009.2019722
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel k-means is an extension of the standard k-means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to kernel-based clustering. Our method adds one cluster at each stage, through a global search procedure consisting of several executions of kernel k-means from suitable initializations. This algorithm does not depend on cluster initialization, identifies nonlinearly separable clusters, and, due to its incremental nature and search procedure, locates near-optimal solutions avoiding poor local minima. Furthermore, two modifications are developed to reduce the computational cost that do not significantly affect the solution quality. The proposed methods are extended to handle weighted data points, which enables their application to graph partitioning. We experiment with several data sets and the proposed approach compares favorably to kernel k-means with random restarts.
引用
收藏
页码:1181 / 1194
页数:14
相关论文
共 50 条
  • [1] The Global Kernel k-Means Clustering Algorithm
    Tzortzis, Grigorios
    Likas, Aristidis
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 1977 - 1984
  • [2] KERNEL OVERLAPPING K-MEANS FOR CLUSTERING IN FEATURE SPACE
    Ben N'Cir, Chiheb-Eddine
    Essoussi, Nadia
    Bertrand, Patrice
    [J]. KDIR 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2010, : 250 - 256
  • [3] K-means clustering algorithm in kernel function space
    Liang, JZ
    Wang, JY
    Xu, XB
    [J]. PROGRESS IN INTELLIGENCE COMPUTATION & APPLICATIONS, 2005, : 642 - 646
  • [4] An Improved Kernel K-means Clustering Algorithm
    Liu, Yang
    Yin, Hong Peng
    Chai, Yi
    [J]. PROCEEDINGS OF 2016 CHINESE INTELLIGENT SYSTEMS CONFERENCE, VOL I, 2016, 404 : 275 - 280
  • [5] The global k-means clustering algorithm
    Likas, A
    Vlassis, N
    Verbeek, JJ
    [J]. PATTERN RECOGNITION, 2003, 36 (02) : 451 - 461
  • [6] A heuristic K-means clustering algorithm by kernel PCA
    Xu, MT
    Fränti, P
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3503 - 3506
  • [7] An Efficient Global K-means Clustering Algorithm
    Xie, Juanying
    Jiang, Shuai
    Xie, Weixin
    Gao, Xinbo
    [J]. JOURNAL OF COMPUTERS, 2011, 6 (02) : 271 - 279
  • [8] A Kernel K-means Clustering Algorithm Based on an Adaptive Mahalanobis Kernel
    Ferreira, Marcelo R. P.
    de Carvalho, Francisco de A. T.
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 1885 - 1892
  • [9] Global k-means plus plus : an effective relaxation of the global k-means clustering algorithm
    Vardakas, Georgios
    Likas, Aristidis
    [J]. APPLIED INTELLIGENCE, 2024, 54 (19) : 8876 - 8888
  • [10] Feature Selection Algorithm Based on K-means Clustering
    Tang, Xue
    Dong, Min
    Bi, Sheng
    Pei, Maofeng
    Cao, Dan
    Xie, Cheche
    Chi, Sunhuang
    [J]. 2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 1522 - 1527