Recursive characterization of computable real-valued functions and relations

被引:28
|
作者
Brattka, V
机构
[1] Theoretische Informatik I, FernUniversität Hagen
关键词
D O I
10.1016/0304-3975(95)00249-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Corresponding to the definition of mu-recursive functions we introduce a class of recursive relations in metric spaces such that each relation is generated from a class of basic relations by a finite number of applications of some specified operators. We prove that our class of recursive relations essentially coincides with our class of densely computable relations, defined via Turing machines. In the special case of the real numbers our subclass of recursive functions coincides with the classical class of computable real-valued functions, defined via Turing machines by Grzegorczyk, Lacombe and others.
引用
收藏
页码:45 / 77
页数:33
相关论文
共 50 条
  • [1] Recursive characterization of computable real-valued functions and relations
    Fern Universitaet Hagen, Hagen, Germany
    [J]. Theor Comput Sci, 1 (45-77):
  • [2] Computable real-valued functions on recursive open and closed subsets of Euclidean space
    Zhou, Q
    [J]. MATHEMATICAL LOGIC QUARTERLY, 1996, 42 (03) : 379 - 409
  • [3] Inferability of recursive real-valued functions
    Hirowatari, E
    Arikawa, S
    [J]. ALGORITHMIC LEARNING THEORY, 1997, 1316 : 18 - 31
  • [4] On the inductive inference of recursive real-valued functions
    Apsitis, K
    Arikawa, S
    Freivalds, R
    Hirowatari, E
    Smith, CH
    [J]. THEORETICAL COMPUTER SCIENCE, 1999, 219 (1-2) : 3 - 17
  • [5] Prediction of recursive real-valued functions from finite examples
    Hirowatari, Eiju
    Hirata, Kouichi
    Miyahara, Tetsuhiro
    [J]. NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2006, 4012 : 224 - 234
  • [6] A comparison of identification criteria for inductive inference of recursive real-valued functions
    Hirowatari, E
    Arikawa, S
    [J]. THEORETICAL COMPUTER SCIENCE, 2001, 268 (02) : 351 - 366
  • [7] A comparison of identification criteria for inductive inference of recursive real-valued functions
    Hirowatari, E
    Arikawa, S
    [J]. ALGORITHMIC LEARNING THEORY, 1998, 1501 : 262 - 275
  • [8] Characterization of continuity for real-valued functions in terms of connectedness
    Wójcik, Michal Ryszard
    Wójcik, Michal Stanislaw
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (04): : 1027 - 1031
  • [9] ON OSCILLATIONS OF REAL-VALUED FUNCTIONS
    Kharazishvili, Alexander
    [J]. TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2021, 175 (01) : 63 - 67
  • [10] Criteria for inductive inference with mind changes and anomalies of recursive real-valued functions
    Hirowatari, E
    Hirata, K
    Miyahara, T
    Arikawa, S
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (02) : 219 - 227