A note for Riesz transforms associated with Schrodinger operators on the Heisenberg Group

被引:6
|
作者
Liu, Yu [1 ]
Tang, Guobin [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Heisenberg group; Stratified Lie group; Reverse Holder class; Riesz transform; Schrodinger operators; SPACES;
D O I
10.1007/s13324-016-0128-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H-n be the Heisenberg group and Q = 2n + 2 be its homogeneous dimension. The Schrodinger operator is denoted by - Delta(n)(H) + V, where Delta(n)(H) is the sub- Laplacian and the nonnegative potential V belongs to the reverse Holder class Bq(1) for q(1) >= Q/2 . Let H-L(P)(H-n) L (Hn) be the Hardy space associated with the Schrodinger operator for Q Q/Q+delta(0) < p <= 1, where delta(0) = min{1, 2 - Q/q(1)}. q1}. In this note we show that the operators T1 = V(- Delta(n)(H) + V)(-1) and T-2 = V-1/2(- Delta(n)(H) + V)(-1/2) are bounded from H-L(p) (H-n) into L p(H-n). Our results are also valid on the stratified Lie group.
引用
收藏
页码:31 / 45
页数:15
相关论文
共 50 条