Commutativity preserving mappings on semiprime rings

被引:41
|
作者
Banning, R
Mathieu, M
机构
[1] Mathematisches Institut, Universität Tübingen, D-72076 Tübingen
关键词
D O I
10.1080/00927879708825851
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a representation theorem for bijective additive mappings preserving commutativity in both directions on 2-torsion free unital centrally closed semiprime rings such that the ideal associated with the second Kaplansky polynomial is essential. The same methods also yield descriptions of Lie automorphisms and Lie derivations.
引用
收藏
页码:247 / 265
页数:19
相关论文
共 50 条
  • [1] Some Theorems of Commutativity on Semiprime Rings With Mappings
    Tiwari, S. K.
    Sharma, R. K.
    Dhara, B.
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2018, 42 (02) : 279 - 292
  • [2] On Centralizing and Strong Commutativity Preserving Maps of Semiprime Rings
    Sh. Huang
    Ö. Göbaşı
    E. Koç
    [J]. Ukrainian Mathematical Journal, 2015, 67 : 323 - 331
  • [3] On Centralizing and Strong Commutativity Preserving Maps of Semiprime Rings
    Huang, Sh.
    Golbasi, O.
    Koc, E.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2015, 67 (02) : 323 - 331
  • [4] Strong Commutativity Preserving Skew Derivations in Semiprime Rings
    De Filippis, V.
    Rehman, N.
    Raza, M. A.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1819 - 1834
  • [5] Strong Commutativity Preserving Skew Derivations in Semiprime Rings
    V. De Filippis
    N. Rehman
    M. A. Raza
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1819 - 1834
  • [6] STRONG COMMUTATIVITY PRESERVING-MAPS OF SEMIPRIME RINGS
    BRESAR, M
    MIERS, CR
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04): : 457 - 460
  • [7] Strong Commutativity-preserving Generalized Derivations on Semiprime Rings
    Jing MA Xiao Wei XU Institute of Mathematics
    [J]. Acta Mathematica Sinica,English Series, 2008, 24 (11) : 1835 - 1842
  • [8] Strong commutativity-preserving generalized derivations on semiprime rings
    Jing Ma
    Xiao Wei Xu
    Feng Wen Niu
    [J]. Acta Mathematica Sinica, English Series, 2008, 24 : 1835 - 1842
  • [9] Strong Commutativity-preserving Generalized Derivations on Semiprime Rings
    Ma, Jing
    Xu, Xiao Wei
    Niu, Feng Wen
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (11) : 1835 - 1842
  • [10] SOME COMMUTATIVITY THEOREMS CONCERNING ADDITIVE MAPPINGS AND DERIVATIONS ON SEMIPRIME RINGS
    Ali, Shakir
    Dhara, Basudeb
    Fosner, Ajda
    [J]. CONTEMPORARY RING THEORY 2011, 2012, : 135 - 143