CDFTPY: A python']python package for performing classical density functional theory calculations for molecular liquids

被引:7
|
作者
Valiev, Marat [1 ]
Chuev, Gennady N. [2 ]
Fedotova, Marina, V [3 ]
机构
[1] PNNL, Environm Mol Sci Lab, Richland, WA 99352 USA
[2] Russian Acad Sci, Inst Theoret & Expt Biophys, Pushchino 142290, Moscow Region, Russia
[3] Russian Acad Sci, GA Krestov Inst Solut Chem, Ivanovo 153045, Russia
基金
美国能源部; 俄罗斯科学基金会;
关键词
Molecular liquids; Classical density functional theory; Solvated particle; Site density; Reference interaction site model; Renormalized site density functional theory; INTEGRAL-EQUATION THEORY; RELEVANT INORGANIC-IONS; FREE-ENERGY; STATISTICAL-MECHANICS; HYDRATION STRUCTURE; BINDING; SOLVATION; ZWITTERION; MODEL; POLAR;
D O I
10.1016/j.cpc.2022.108338
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Classical density functional theory (CDFT) provides a rigorous theoretical framework for the statistical mechanics based analysis of many-body systems. This approach has proven to be successful in simulations of mono-atomic, i.e. simple liquids, and there is an ongoing theoretical effort in extending it to more complex polyatomic, molecular liquid systems. Sharing these developments in the form of open-source and easily accessible codes could greatly benefit these efforts. In this work, we present python-based CDFT code that contains both conventional Reference Interaction Site Model (RISM) and recently developed renormalized site density theory (RSDFT) approach. The current implementation is focused on ion solvation - the problem of both fundamental and practical importance. It allows the calculation of individual ions as well as comparative analysis across a range of interaction parameters. Program summary Program Title: cdftpy CPC Library link to program files: https://doi.org/10.17632/p8dsgz5n4g.1 Developer's repository link: https://github.com/opencdft Licensing provisions: GPLv3 Programming language: python 3.9+ Nature of problem: Computational modeling of molecular liquids at the atomistic level of resolution is an important capability across many scientific areas. Classical density functional theory (CDFT) approaches this problem by building statistical mechanics model of the system in terms of its average atomic (site) density. Such an approach can provide orders of magnitudes improvements in efficiency compared to conventional molecular dynamics simulations, but requires special treatment of multi-scale interactions in a molecular liquid. A practical utility of our open-source python based implementation of CDFT is the study the problem solvation of ions or Lennard-Jones particles. Solution method: Python package developed in this work provides two CDFT implementations for molecular liquids - renormalized site density functional theory and reference interaction site model. It enables calculations of thermodynamic and structural properties related to solvation of spherical solutes. The nonlinear integral equations associated with the two methods are solved iteratively, utilizing Fast Fourier Transform (FFT) for the calculation of the numerically intensive convolution integrals. The resulting code provides near instantaneous evaluation of the solvated properties of individual solutes and high-throughput screening across the range of different solute parameters. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] PyCDFT: A Python']Python package for constrained density functional theory
    Ma, He
    Wang, Wennie
    Kim, Siyoung
    Cheng, Man-Hin
    Govoni, Marco
    Galli, Giulia
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (20) : 1859 - 1867
  • [2] GPAW: An open Python']Python package for electronic structure calculations
    Mortensen, Jens Jorgen
    Larsen, Ask Hjorth
    Kuisma, Mikael
    Ivanov, Aleksei V.
    Taghizadeh, Alireza
    Peterson, Andrew
    Haldar, Anubhab
    Dohn, Asmus Ougaard
    Schafer, Christian
    Jonsson, Elvar Orn
    Hermes, Eric D.
    Nilsson, Fredrik Andreas
    Kastlunger, Georg
    Levi, Gianluca
    Jonsson, Hannes
    Hakkinen, Hannu
    Fojt, Jakub
    Kangsabanik, Jiban
    Sodequist, Joachim
    Lehtomaki, Jouko
    Heske, Julian
    Enkovaara, Jussi
    Winther, Kirsten Trostrup
    Dulak, Marcin
    Melander, Marko M.
    Ovesen, Martin
    Louhivuori, Martti
    Walter, Michael
    Gjerding, Morten
    Lopez-Acevedo, Olga
    Erhart, Paul
    Warmbier, Robert
    Wuerdemann, Rolf
    Kaappa, Sami
    Latini, Simone
    Boland, Tara Maria
    Bligaard, Thomas
    Skovhus, Thorbjorn
    Susi, Toma
    Maxson, Tristan
    Rossi, Tuomas
    Chen, Xi
    Schmerwitz, Yorick Leonard A.
    Schiotz, Jakob
    Olsen, Thomas
    Jacobsen, Karsten Wedel
    Thygesen, Kristian Sommer
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (09):
  • [3] pysimm: A python']python package for simulation of molecular systems
    Fortunato, Michael E.
    Colina, Coray M.
    [J]. SOFTWAREX, 2017, 6 : 7 - 12
  • [4] MOFUN: a Python']Python package for molecular find and replace
    Boone, Paul
    Wilmer, Christopher E.
    [J]. DIGITAL DISCOVERY, 2022, 1 (05): : 679 - 688
  • [5] GSEApy: a comprehensive package for performing gene set enrichment analysis in Python']Python
    Fang, Zhuoqing
    Liu, Xinyuan
    Peltz, Gary
    [J]. BIOINFORMATICS, 2023, 39 (01)
  • [6] Rabacus: A Python']Python package for analytic cosmological radiative transfer calculations
    Altay, G.
    Wise, J. H.
    [J]. ASTRONOMY AND COMPUTING, 2015, 10 : 73 - 87
  • [7] Pytim: A Python']Python Package for the Interfacial Analysis of Molecular Simulations
    Sega, Marcello
    Hantal, Gyoergy
    Fabian, Balazs
    Jedlovszky, Pal
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (25) : 2118 - 2125
  • [8] BubbleDet: a Python']Python package to compute functional determinants for bubble nucleation
    Ekstedt, Andreas
    Gould, Oliver
    Hirvonen, Joonas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (12)
  • [9] scikit-fda: A Python']Python Package for Functional Data Analysis
    Ramos-Carreno, Carlos
    Carbajo-Berrocal, Miguel
    Torrecilla, Jose Luis
    Marcos, Pablo
    Suarez, Alberto
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2024, 109 (02): : 1 - 37
  • [10] pyIAST: Ideal adsorbed solution theory (IAST) Python']Python package
    Simon, Cory M.
    Smit, Berend
    Haranczyk, Maciej
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 : 364 - 380