For the low iteration convergence rate and the disability to track the change of channels in hierarchical matching game, a new resource allocation strategy for wireless virtual networks, i.e., the channel's price-based hierarchical matching/Stackelberg game is proposed in this paper. A three-level joint optimization model is established on each layer reward function based on stream's bandwidth-based user's satisfaction, the system's bandwidth and the slice's power. The hierarchical matching/Stackelberg game is adopted to solve the optimizing problem. In the lower layer of the hierarchical game, the m(n) is defined to present Mobile Virtual Network Operator(MVNO) m-InPn and one-to-one matching game between it and UEs is constructed to displace the many-to-one matching game between UEs and MVNOs, where a price based on the global information of channels is given to speed up the identical convergence between the upper and the lower layer and make UEs select the optimal m(n) adapting the channel. After proving the existing of equilibrium, the rejecting-receiving algorithm for one-to-one matching game is proposed. In the upper layer of the hierarchical game, a Stackelberg game between the InPs and many m(n) is formed based on the connection between those users and m(n), and an optimized power pricing and allocation strategy based on local information of channel are given, which makes the optimal system utility and resource utilization based on channels. Finally, the process for the two-tier cycling is given and the stability of the hierarchical game is characterized. Simulation results show that the channel's price-based hierarchical matching/Stackelberg game strategy outperforms the random pricing hierarchical matching/Stackelberg game and the conventional hierarchical matching game in the aspect of tracking channel's changing and spectrum efficiency and system's utility.