Convolutional Neural Networks for Night-Time Animal Orientation Estimation

被引:0
|
作者
Wagner, Raimar [1 ]
Thom, Markus [2 ]
Gabb, Michael [2 ]
Limmer, Matthias
Schweiger, Roland [3 ]
Rothermel, Albrecht [1 ,3 ]
机构
[1] Univ Ulm, Drive U Inst Microelect, D-89069 Ulm, Germany
[2] Univ Ulm, Inst Measurement, Control & MicroTechnol, Ulm, Germany
[3] Daimler AG R&D, Ulm, Germany
关键词
DEEP;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In rural areas, wildlife animal road crossings are a threat to both the driver and the wildlife population. Since most accidents take place at night, recent night vision driver assistance systems are supporting the driver by automatically detecting animals on infrared camera imagery. After detecting an animal on the roadside, the orientation towards the road can give a first cue for an upcoming trajectory prediction. This paper describes an novel classification-based scheme for night-time animal orientation estimation from single infrared images. Our system classifies already detected animals, in particular deer, as being either oriented left, right or back/front. We propose an approach based on Convolutional Neural Networks which learns multiple stages of invariant features in a supervised end-to-end fashion. Experiments show that our method outperforms baseline methods like HOG/SVM or boosted Haarstumps on this task.
引用
收藏
页码:316 / 321
页数:6
相关论文
共 50 条
  • [1] Night-time Indoor Relocalization Using Depth Image with Convolutional Neural Networks
    Li, Ruihao
    Liu, Qiang
    Gui, Jianjun
    Gu, Dongbing
    Hu, Huosheng
    2016 22ND INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2016, : 261 - 266
  • [2] Night Time Road Curvature Estimation based on Convolutional Neural Networks
    Hartmann, Oliver
    Schweiger, Roland
    Wagner, Raimar
    Schuele, Florian
    Gabb, Michael
    Dietmayer, Klaus
    2013 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2013, : 841 - 846
  • [3] Night-time cloud cover estimation
    Sospedra, F
    Caselles, V
    Valor, E
    Di Bella, C
    Coll, C
    Rubio, E
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (11) : 2193 - 2205
  • [4] MONOCULAR DEPTH ESTIMATION FOR NIGHT-TIME IMAGES
    Khalefa, N.
    El-Sheimy, N.
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 171 - 178
  • [5] Enhancing the estimation of fiber orientation distributions using convolutional neural networks
    Lucena, Oeslle
    Vos, Sjoerd B.
    Vakharia, Vejay
    Duncan, John
    Ashkan, Keyoumars
    Sparks, Rachel
    Ourselin, Sebastien
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135 (135)
  • [6] Night-time
    Alikavazovic, Jakuta
    NOUVELLE REVUE FRANCAISE, 2013, (606): : 129 - 135
  • [7] Night-time
    Kapos, Martha
    POETRY REVIEW, 2022, 112 (01): : 25 - 25
  • [8] Image Orientation Estimation with Convolutional Networks
    Fischer, Philipp
    Dosovitskiy, Alexey
    Brox, Thomas
    PATTERN RECOGNITION, GCPR 2015, 2015, 9358 : 368 - 378
  • [9] Day and Night-Time Dehazing by Local Airlight Estimation
    Ancuti, Cosmin
    Ancuti, Codruta O.
    De Vleeschouwer, Christophe
    Bovik, Alan C.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 6264 - 6275
  • [10] Night-time Activities
    Cho, Joanna
    LANDFALL, 2022, (244): : 108 - 109