A General Framework for the Evaluation of Direct Nonoxidative Methane Conversion Strategies

被引:87
|
作者
Huang, Kefeng [1 ]
Miller, James B. [1 ]
Huber, George W. [1 ]
Dumesic, James A. [1 ]
Maravelias, Christos T. [1 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
关键词
NATURAL-GAS; SHALE GAS; PRODUCT DISTRIBUTION; TECHNOECONOMIC ASSESSMENT; CATALYTIC CONVERSION; HIGHER HYDROCARBONS; OPTIMAL-DESIGN; CO2; EMISSIONS; ETHYLENE; OLEFINS;
D O I
10.1016/j.joule.2018.01.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we study single-step natural gas conversion technologies that directly convert methane to olefins and higher hydrocarbons. Despite the relative simplicity of these technologies, the development of processes based on these approaches remains challenging. Accordingly, we utilize process synthesis and modeling to assess the economic feasibility of direct nonoxidative methane conversion strategies. We develop a flexible approach that allows for the systematic evaluation of various technology alternatives and for the identification of the key technology gaps that must be overcome. The results of our analyses demonstrate that an economically feasible direct methane conversion process is contingent upon fundamental research advances in the area of catalytic conversion to increase methane conversion to hydrocarbon products (e.g., coke formation less than 20% and a minimum conversion to products of 25%). Upon this development, further efforts can be devoted to improve ethylene selectivity as well as reduce catalyst cost and overall capital costs.
引用
收藏
页码:349 / 365
页数:17
相关论文
共 50 条
  • [1] Direct conversion of methane under nonoxidative conditions
    Xu, YD
    Bao, XH
    Lin, LW
    [J]. JOURNAL OF CATALYSIS, 2003, 216 (1-2) : 386 - 395
  • [2] Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen
    Guo, Xiaoguang
    Fang, Guangzong
    Li, Gang
    Ma, Hao
    Fan, Hongjun
    Yu, Liang
    Ma, Chao
    Wu, Xing
    Deng, Dehui
    Wei, Mingming
    Tan, Dali
    Si, Rui
    Zhang, Shuo
    Li, Jianqi
    Sun, Litao
    Tang, Zichao
    Pan, Xiulian
    Bao, Xinhe
    [J]. SCIENCE, 2014, 344 (6184) : 616 - 619
  • [4] Research progress in the direct, nonoxidative conversion of methane to olefins/aromatics (II)
    Huang X.
    Jiao X.
    Wang X.-B.
    Zhao N.
    [J]. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2022, 50 (01): : 44 - 53
  • [5] NONOXIDATIVE METHANE CONVERSION INTO HIGHER HYDROCARBONS
    SOKOLOVSKII, VD
    SHEPELEV, SS
    [J]. NATURAL GAS CONVERSION II, 1994, 81 : 497 - 502
  • [6] Direct Nonoxidative Methane Conversion in an Autothermal Hydrogen-Permeable Membrane Reactor
    Sakbodin, Mann
    Schulman, Emily
    Cheng, Sichao
    Huang, Yi-Lin
    Pan, Ying
    Albertus, Paul
    Wachsman, Eric D.
    Liu, Dongxia
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (46)
  • [7] Technoeconomic Evaluation of the Industrial Implementation of Catalytic Direct Nonoxidative Methane Coupling
    Postma, Rolf S.
    Keijsper, Dylan J.
    Morsink, Bart F.
    Siegers, Erwin H.
    Mercimek, Muhammed E. E.
    Nieukoop, Lance K.
    van den Berg, Henk
    van der Ham, Aloijsius G. J.
    Lefferts, Leon
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (01) : 566 - 579
  • [8] Modern Catalysts and Methods of Nonoxidative Methane Conversion
    D. V. Golinskii
    N. V. Vinichenko
    E. V. Zatolokina
    V. V. Pashkov
    E. A. Paukshtis
    T. I. Gulyaeva
    P. E. Pavlyuchenko
    O. V. Krol’
    A. S. Belyi
    [J]. Russian Journal of General Chemistry, 2020, 90 : 1104 - 1119
  • [9] Modern Catalysts and Methods of Nonoxidative Methane Conversion
    Golinskii, D. V.
    Vinichenko, N. V.
    Zatolokina, E. V.
    Pashkov, V. V.
    Paukshtis, E. A.
    Gulyaeva, T. I.
    Pavlyuchenko, P. E.
    Krol', O. V.
    Belyi, A. S.
    [J]. RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2020, 90 (06) : 1104 - 1119
  • [10] AN EVALUATION OF DIRECT METHANE CONVERSION PROCESSES
    FOX, JM
    CHEN, TP
    DEGEN, BD
    [J]. CHEMICAL ENGINEERING PROGRESS, 1990, 86 (04) : 42 - 50