Two spanning disjoint paths with required length in generalized hypercubes

被引:5
|
作者
Duh, Dyi-Rong [1 ]
Lin, Yao-Chung [2 ]
Lai, Cheng-Nan [3 ]
Wang, Yue-Li [4 ]
机构
[1] Hwa Hsia Inst Technol, Dept Comp Sci & Informat Engn, New Taipei City 23568, Taiwan
[2] Natl Chi Nan Univ, Dept Comp Sci & Informat Engn, Puli 54561, Nantou Hsien, Taiwan
[3] Natl Kaohsiung Marine Univ, Dept Informat Management, Kaohsiung 81143, Taiwan
[4] Natl Taiwan Univ Sci & Technol, Dept Informat Management, Taipei 10607, Taiwan
关键词
2RP-property; Generalized hypercube; Vertex-disjoint paths; Hamiltonian-connected; Path embedding; HAMILTONIAN PATHS; PANCONNECTIVITY; COMMUNICATION; CONNECTIVITY; EMBEDDINGS;
D O I
10.1016/j.tcs.2013.08.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given two pairs < u, v > and < x, y > of vertices of a graph G = (V, E) and two integers l(1) and l(2) with l(1) + l(2) = vertical bar V(G)vertical bar - 2, G is said to be satisfying the 2RP-property if there exist two disjoint paths P-1 and P-2 such that (1) P-1 is a path joining u to v with l(P-1) = l(1), (2) P-2 is a path joining x to y with l(P-2) = l(2), and (3) P-1 boolean OR P-2 spans G, where l(P) denotes the length of path P. In this paper, we show that an r-dimensional generalized hypercube, denoted by G(m(r), m(r-1), ... , m(1)), satisfies the 2RP-property except some special conditions, where m(i) >= 4 for all 1 <= i <= r. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 78
页数:24
相关论文
共 50 条
  • [1] ON THE EXISTENCE OF DISJOINT SPANNING PATHS IN FAULTY HYPERCUBES
    Lin, Cheng-Kuan
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    Cheng, Eddie
    Liptak, Laszlo
    JOURNAL OF INTERCONNECTION NETWORKS, 2010, 11 (1-2) : 71 - 96
  • [2] Two conditions for reducing the maximal length of node-disjoint paths in hypercubes
    Lai, Cheng-Nan
    THEORETICAL COMPUTER SCIENCE, 2012, 418 : 82 - 91
  • [3] Two node-disjoint paths in balanced hypercubes
    Cheng, Dongqin
    Hao, Rong-Xia
    Feng, Yan-Quan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 127 - 142
  • [4] Disjoint cycles and spanning graphs of hypercubes
    Kobeissi, M
    Mollard, M
    DISCRETE MATHEMATICS, 2004, 288 (1-3) : 73 - 87
  • [5] On edge-disjoint spanning trees in hypercubes
    Barden, B
    Libeskind-Hadas, R
    Davis, J
    Williams, W
    INFORMATION PROCESSING LETTERS, 1999, 70 (01) : 13 - 16
  • [6] On edge-disjoint spanning trees in hypercubes
    Department of Computer Science, Harvey Mudd College, 301 E. 12th Street, Claremont, CA 91711, United States
    Inf. Process. Lett., 1 (13-16):
  • [7] Edge disjoint paths in hypercubes and folded hypercubes with conditional faults
    Qiao, Yalin
    Yang, Weihua
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 294 : 96 - 101
  • [8] Edge disjoint paths in hypercubes and folded hypercubes with conditional faults
    Qiao, Yalin
    Yang, Weihua
    Applied Mathematics and Computation, 2017, 294 : 96 - 101
  • [9] Disjoint paths of bounded length in large generalized cycles
    Ferrero, D
    Padró, C
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 285 - 298
  • [10] Spanning multi-paths in hypercubes
    Caha, Rostislav
    Koubek, Vaclav
    DISCRETE MATHEMATICS, 2007, 307 (16) : 2053 - 2066