Microevolution of Pseudomonas aeruginosa to a Chronic Pathogen of the Cystic Fibrosis Lung

被引:102
|
作者
Hogardt, Michael [1 ]
Heesemann, Juergen [2 ]
机构
[1] Bavarian Hlth & Food Safety Author, Dept Infectiol, D-85764 Oberschleissheim, Germany
[2] Univ Munich, Max Von Pettenkofer Inst Hyg & Med Microbiol, D-80336 Munich, Germany
来源
关键词
CHRONIC PULMONARY INFECTION; SMALL-COLONY VARIANTS; GENETIC ADAPTATION; OXYGEN LIMITATION; EXTRACELLULAR DNA; RESPIRATORY-TRACT; BIOFILM FORMATION; OXIDATIVE STRESS; ALGINATE; GROWTH;
D O I
10.1007/82_2011_199
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistance of P. aeruginosa in the CF lung requires a sophisticated habitat-specific adaptation of this pathogen to the heterogeneous and fluctuating lung environment. Due to the high selective pressure of inflamed CF lungs, P. aeruginosa increasingly experiences complex physiological and morphological changes. Pulmonary adaptation of P. aeruginosa is mediated by genetic variations that are fixed by the repeating interplay of mutation and selection. In this context, the emergence of hypermutable phenotypes (mutator strains) obviously improves the microevolution of P. aeruginosa to the diverse microenvironments of the CF lung. Mutator phenotypes are amplified during CF lung disease and accelerate the intraclonal diversification of P. aeruginosa. The resulting generation of numerous subclonal variants is advantegous to prepare P. aeruginosa population for unpredictable stresses (insurance hypothesis) and thus supports long-term survival of this pathogen. Oxygen restriction within CF lung environment further promotes persistence of P. aeruginosa due to increased antibiotic tolerance, alginate production and biofilm formation. Finally, P. aeruginosa shifts from an acute virulent pathogen of early infection to a host-adapted chronic virulent pathogen of end-stage infection of the CF lung. Common changes that are observed among chronic P. aeruginosa CF isolates include alterations in surface antigens, loss of virulence-associated traits, increasing antibiotic resistances, the overproduction of the exopolysaccharide alginate and the modulation of intermediary and microaerobic metabolic pathways (Hogardt and Heesemann, Int J Med Microbiol 300(8):557-562, 2010). Loss-of-function mutations in mucA and lasR genes determine the transition to mucoidity and loss of quorum sensing, which are hallmarks of the chronic virulence potential of P. aeruginosa. Metabolic factors that are positively selected in response to the specific environment of CF lung include the outer membrane protein OprF, the microaerophilic oxidase Cbb3-2, the blue copper protein azurin, the cytochrome c peroxidase c551 and the enzymes of the arginine deiminase pathway ArcA-ArcD. These metabolic adaptations probably support the growth of P. aeruginosa within oxygen-depleted CF mucus. The deeper understanding of the physiological mechanisms of niche specialization of P. aeruginosa during CF lung infection will help to identify new targets for future anti-pseudomonal treatment strategies to prevent the selection of mutator isolates and the establishment of chronic CF lung infection.
引用
收藏
页码:91 / 118
页数:28
相关论文
共 50 条
  • [1] MICROEVOLUTION OF PSEUDOMONAS AERUGINOSA IN CYSTIC FIBROSIS LUNGS
    Klockgether, J.
    Cramer, N.
    Fischer, S.
    Dorda, M.
    Wiehlmann, L.
    Tummler, B.
    [J]. PEDIATRIC PULMONOLOGY, 2017, 52 : S337 - S337
  • [2] MICROEVOLUTION OF PSEUDOMONAS AERUGINOSA IN CYSTIC FIBROSIS LUNGS
    Cramer, N.
    Klockgether, J.
    Davenport, C. F.
    Tuemmler, B.
    [J]. PEDIATRIC PULMONOLOGY, 2014, 49 : 324 - 324
  • [3] Microevolution of Pseudomonas aeruginosa in cystic fibrosis lungs
    Nina Cramer
    Jens Klockgether
    Colin F Davenport
    Burkhard Tümmler
    [J]. Molecular and Cellular Pediatrics, 1 (Suppl 1)
  • [4] Microevolution of Pseudomonas aeruginosa in the airways of people with cystic fibrosis
    Cramer, Nina
    Klockgether, Jens
    Tuemmler, Burkhard
    [J]. CURRENT OPINION IN IMMUNOLOGY, 2023, 83
  • [5] Population biology and microevolution of Pseudomonas aeruginosa in cystic fibrosis airways
    Cramer, N.
    Fischer, S.
    Klockgether, J.
    Davenport, C.
    Wiehlmann, L.
    Woltemate, S.
    Suerbaum, S.
    Tuemmler, B.
    [J]. INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2012, 302 : 109 - 109
  • [6] Pseudomonas aeruginosa Microevolution during Cystic Fibrosis Lung Infection Establishes Clones with Adapted Virulence
    Bragonzi, Alessandra
    Paroni, Moira
    Nonis, Alessandro
    Cramer, Nina
    Montanari, Sara
    Rejman, Joanna
    Di Serio, Clelia
    Doering, Gerd
    Tuemmler, Burkhard
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2009, 180 (02) : 138 - 145
  • [7] Persistence and Microevolution of Pseudomonas aeruginosa in the Cystic Fibrosis Lung: A Single-Patient Longitudinal Genomic Study
    Bianconi, Irene
    D'Arcangelo, Silvia
    Esposito, Alfonso
    Benedet, Mattia
    Piffer, Elena
    Dinnella, Grazia
    Gualdi, Paola
    Schinella, Michele
    Baldo, Ermanno
    Donati, Claudio
    Jousson, Olivier
    [J]. FRONTIERS IN MICROBIOLOGY, 2019, 9
  • [8] CHRONIC LUNG INFECTION WITH PSEUDOMONAS-AERUGINOSA IN CYSTIC-FIBROSIS
    CHANEY, HR
    FINK, RJ
    [J]. CURRENT OPINION IN INFECTIOUS DISEASES, 1991, 4 (02) : 140 - 144
  • [9] Dynamics of Adaptive Microevolution of Hypermutable Pseudomonas aeruginosa during Chronic Pulmonary Infection in Patients with Cystic Fibrosis
    Hoboth, Christina
    Hoffmann, Reinhard
    Eichner, Anja
    Henke, Christine
    Schmoldt, Sabine
    Imhof, Axel
    Heesemann, Juergen
    Hogardt, Michael
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2009, 200 (01): : 118 - 130
  • [10] Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients
    Marvig, Rasmus Lykke
    Dolce, Daniela
    Sommer, Lea M.
    Petersen, Bent
    Ciofu, Oana
    Campana, Silvia
    Molin, Soren
    Taccetti, Giovanni
    Johansen, Helle Krogh
    [J]. BMC MICROBIOLOGY, 2015, 15