Nonequilibrium ensemble derivation of hydrodynamic heat transport and higher-order generalizations

被引:0
|
作者
Rodrigues, Cloves G. [1 ]
Silva, Carlos A. B. [2 ]
Ramos, Jose G. [3 ]
Luzzi, Roberto [3 ]
机构
[1] Pontifical Catholic Univ Goias, Sch Exact Sci & Comp, CP 86, BR-74605010 Goiania, Go, Brazil
[2] Inst Tecnol Aeronaut, Dept Fis, BR-12228901 Sao Jose Dos Campos, SP, Brazil
[3] Univ Estadual Campinas, Condensed Matter Phys Dept, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
关键词
Thermal transport; Thermal prototyping; Hydrothermodynamics; BALLISTIC-DIFFUSIVE EQUATIONS; INFORMATIONAL-STATISTICAL THERMODYNAMICS; EFFECTIVE THERMAL-CONDUCTIVITY; LATTICE BOLTZMANN METHOD; PHONON HYDRODYNAMICS; IRREVERSIBLE THERMODYNAMICS; NONLINEAR TRANSPORT; ELECTRON-MOBILITY; TEMPERATURE; SEMICONDUCTORS;
D O I
10.1007/s12648-020-01968-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thermal transport in classical fluids is analyzed through higher-order generalized hydrodynamics (or mesoscopic hydrothermodynamics) depending on the evolution of the energy density and its fluxes of all orders. It is derived by a kinetic theory based on the nonequilibrium statistical ensemble formalism. A general system of coupled evolution equations is derived. Maxwell times, which are of significance to determine the character of the motion, are derived. They also have an important role in the choice of the contraction of description (limitation in the number of fluxes to be retained) in the studies on hydrodynamic motions. In a description of order 1, an analysis of the technological process of thermal prototyping is presented.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 50 条
  • [1] Nonequilibrium ensemble derivation of hydrodynamic heat transport and higher-order generalizations
    Clóves G. Rodrigues
    Carlos A. B. Silva
    José G. Ramos
    Roberto Luzzi
    Indian Journal of Physics, 2022, 96 : 647 - 657
  • [2] On the higher-order generalizations of Poisson structures
    deAzcarraga, JA
    Izquierdo, JM
    Bueno, JCP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (18): : L607 - L616
  • [3] Higher-order generalized hydrodynamics: Foundations within a nonequilibrium statistical ensemble formalism
    Silva, Carlos A. B.
    Rodrigues, Cloves G.
    Galvao Ramos, J.
    Luzzi, Roberto
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [4] GENERALIZATIONS OF LAGUERRE METHOD - HIGHER-ORDER METHODS
    FOSTER, LV
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) : 1004 - 1018
  • [5] Higher-order generalizations of Hadamard's inequality
    Bessenyei, M
    Páles, Z
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2002, 61 (3-4): : 623 - 643
  • [6] HIGHER-ORDER GENERALIZATION IN PROGRAM DERIVATION
    PETTOROSSI, A
    SKOWRON, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 250 : 182 - 196
  • [7] HIGHER-ORDER HYDRODYNAMIC INTERACTIONS IN THE CALCULATION OF POLYMER TRANSPORT-PROPERTIES
    PHILLIES, GDJ
    KIRKITELOS, PC
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1993, 31 (12) : 1785 - 1797
  • [8] ON THE DERIVATION OF HIGHER-ORDER CORRELATION-FUNCTIONS
    BONOMETTO, SA
    SHARP, NA
    ASTRONOMY & ASTROPHYSICS, 1980, 92 (1-2) : 222 - 224
  • [9] Derivation and inference of higher-order strictness types
    Smetsers, Sjaak
    van Eekelen, Marko
    COMPUTER LANGUAGES SYSTEMS & STRUCTURES, 2015, 44 : 166 - 180
  • [10] DERIVATION OF SKYRME LAGRANGIAN AND HIGHER-ORDER TERM
    ITO, A
    PHYSICAL REVIEW D, 1990, 41 (09): : 2930 - 2932