Prediction of DNA sequences using adaptative neuro-fuzzy inference system

被引:2
|
作者
Mihi, Assia [1 ]
Boucenna, Nourredine [2 ]
Ben Mahammmed, Kheir [3 ]
机构
[1] Mohammed Kheider Univ, Fac Engn, Dept Elect Engn, Ave Sidi Okba, Biskra, Algeria
[2] Mohamed El Bachir El Ibrahimi Univ, Fac Engn, Dept Elect, Bordj Bou Arreridj, El Annasser, Algeria
[3] Ferhat Abesse Univ, Fac Engn, Dept Elect, El Maabouda, Setif, Algeria
关键词
DNA sequence; adaptative neuro-fuzzy inference system (ANFIS); fuzzy logic; wavelet transform; genomic signal; GENE; BIOINFORMATICS;
D O I
10.1142/S179352451850047X
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate prediction and detection of the DNA regions or their underlying structural patterns are constant difficulties for researchers. Feature extraction and functional classification of genomic sequences is an interesting area of research. Many computational techniques have already been applied including the artificial neural network (ANN), nonlinear model, spectrogram and statistical techniques. In this paper, some features are extracted from the wavelet coefficient and second set of features are extracted from the frequency of transition of nucleotides. These two features sets are examined. The purpose was to investigate the abilities of these parameters to predict critical segment in the DNA sequence. The neuro-fuzzy system was used for prediction. The performance of the neuro-fuzzy system was evaluated in terms of training performance and prediction accuracies. Two genomic sequences of the classes: prokaryotic and eukaryotic were used, as an example, (Escherichia coli) and (Caenorhabditis elegans) sequences were selected.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [2] Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System
    Zhang, Hanwen
    Fotouhi, Abbas
    Auger, Daniel J.
    Lowe, Matt
    BATTERIES-BASEL, 2024, 10 (03):
  • [3] Protein structure prediction using an adaptive neuro-fuzzy inference system
    Wang, YX
    Wang, ZH
    Li, XM
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1625 - 1628
  • [4] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [5] Prediction of the level of air pollution using adaptive neuro-fuzzy inference system
    Suganya, S.
    Meyyappan, T.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 37131 - 37150
  • [6] Swelling Prediction in Compacted Soils Using Adaptive Neuro-Fuzzy Inference System
    Jokar, Mehdi Hashemi
    Mirassi, Sohrab
    Mahboubi, Meisam
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2023, 17 (01) : 97 - 106
  • [7] Prediction of concrete elastic modulus using adaptive neuro-fuzzy inference system
    Aydin, Abdulkadir Cueneyt
    Tortum, Ahmet
    Yavuz, Murat
    CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 2006, 23 (04) : 295 - 309
  • [8] Prediction of student academic performance by using an adaptive neuro-fuzzy inference system
    Sevindik, Tuncay
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART B-SOCIAL AND EDUCATIONAL STUDIES, 2011, 3 (04): : 635 - 646
  • [9] Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    Zounemat-Kermani, Mohammad
    Teshnehlab, Mohammad
    APPLIED SOFT COMPUTING, 2008, 8 (02) : 928 - 936
  • [10] Prediction of Automotive Ride Performance Using Adaptive Neuro-Fuzzy Inference System and Fuzzy Clustering
    Shi, Tianze
    Chen, Shuming
    Wang, Dengfeng
    SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-MECHANICAL SYSTEMS, 2015, 8 (03): : 916 - 927